Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(40): 27756-27763, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37727317

ABSTRACT

Optimization of lithium-sulfur batteries highly depends on exploring and characterizing new cathode materials. Sulfur/carbon copolymers have recently attracted much attention as an alternative class of cathodes to replace crystalline sulfur. In particular, poly(sulfur-n-1,3-diisopropenylbenzene) (S/DIB) has been under considerable experimental and theoretical investigations, promising a good performance in mitigating the so-called shuttle effect. Here, combining ab initio Raman spectroscopy simulations with experimental measurements, we show that S/DIB copolymers containing short and long sulfur chains are distinguishable based on their Raman activity in 400-500 cm-1. This frequency range corresponds to S-S stretching vibrations and is only observed in the Raman spectra of those copolymers with longer sulfur chains. The results reported in this study have direct applications in identification and characterization of general sulfur/carbon copolymers with different sulfur contents.

2.
ACS Nano ; 17(8): 7889-7900, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37014093

ABSTRACT

For lithium-sulfur (Li-S) batteries to become competitive, they require high stability and energy density. Organosulfur polymer-based cathodes have recently shown promising performance due to their ability to overcome common limitations of Li-S batteries, such as the insulating nature of sulfur. In this study, we use a multiscale modeling approach to explore the influence of the regiochemistry of a conjugated poly(4-(thiophene-3-yl)benzenethiol) (PTBT) polymer on its aggregation behavior and charge transport. Classical molecular dynamics simulations of the self-assembly of polymer chains with different regioregularity show that a head-to-tail/head-to-tail regularity can form a well-ordered crystalline phase of planar chains allowing for fast charge transport. Our X-ray diffraction measurements, in conjunction with our predicted crystal structure, confirm the presence of crystalline phases in the electropolymerized PTBT polymer. We quantitatively describe the charge transport in the crystalline phase in a band-like regime. Our results give detailed insights into the interplay between microstructural and electrical properties of conjugated polymer cathode materials, highlighting the effect of polymer chain regioregularity on its charge transport properties.

3.
Chemphyschem ; 23(1): e202100519, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34586703

ABSTRACT

Sulfur co-polymers have recently drawn considerable attention as alternative cathode materials for lithium-sulfur batteries, thanks to their flexible atomic structure and the ability to provide high reversible capacity. Here, we report on the atomic structure of sulfur/1,3-diisopropenylbenzene co-polymers (poly(S-co-DIB)) based on the insights obtained from density-functional theory calculations. The focus is set on studying the local structural properties, namely the favorable sulfur chain length (Sn with n = 1 ⋯ 8 ) connecting two DIBs. In order to investigate the effects of the organic groups and sulfur chains separately, we perform series of atomic structure optimizations. We start from simple organic groups connected via sulfur chains and gradually change the structure of the organic groups until we reach a structure in which two DIB molecules are attached via sulfur chains. Additionally, to increase the structural sampling, we perform temperature-assisted minimum-energy structure search on slightly simpler model systems. We find that in DIB-Sn -DIB co-polymers, shorter sulfur chains with n ∼ 4 are preferred, where the stabilization is mostly brought about by the sulfur chains rather than the organic groups. The presented results, corresponding to the fully charged state of the cathode in the thermodynamic limit, have direct applications in the field of lithium-sulfur batteries with sulfur-polymer cathodes.

4.
Micromachines (Basel) ; 12(10)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34683263

ABSTRACT

We demonstrate how to fully ascribe Raman peaks simulated using ab initio molecular dynamics to specific vibrations in the structure at finite temperatures by means of Wannier functions. Here, we adopt our newly introduced method for the simulation of the Raman spectra in which the total polarizability of the system is expressed as a sum over Wannier polarizabilities. The assignment is then based on the calculation of partial Raman activities arising from self- and/or cross-correlations between different types of Wannier functions in the system. Different types of Wannier functions can be distinguished based on their spatial spread. To demonstrate the predictive power of this approach, we applied it to the case of a cyclohexane molecule in the gas phase and were able to fully assign the simulated Raman peaks.

5.
Micromachines (Basel) ; 12(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200610

ABSTRACT

Recently, a new method [P. Partovi-Azar and D. Sebastiani, J. Chem. Phys. 152, 064101 (2020)] was proposed to increase the efficiency of proton transfer energy calculations in density functional theory by using the T1 state with additional optimized effective potentials instead of calculations at S1. In this work, we focus on proton transfer from six prototypical photoacids to neighboring water molecules and show that the reference proton dissociation curves obtained at S1 states using time-dependent density functional theory can be reproduced with a reasonable accuracy by performing T1 calculations at density functional theory level with only one additional effective potential for the acidic hydrogens. We also find that the extra effective potentials for the acidic hydrogens neither change the nature of the T1 state nor the structural properties of solvent molecules upon transfer from the acids. The presented method is not only beneficial for theoretical studies on excited state proton transfer, but we believe that it would also be useful for studying other excited state photochemical reactions.

6.
J Chem Phys ; 152(6): 064101, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32061215

ABSTRACT

Many fundamental chemical reactions are triggered by electronic excitations. Here, we propose and benchmark a novel approximate first-principles molecular dynamics simulation idea for increasing the computational efficiency of density functional theory-based calculations of the excited states. We focus on obtaining proton transfer energy at the S1 excited state through actual density functional theory calculations at the T1 state with additional optimized effective potentials. The potentials are optimized as such to reproduce the excited-state energy surface obtained using time-dependent density functional theory, but can be generalized to other more accurate quantum chemical methods. We believe that the presented method is not only suitable for studies on excited-state proton transfer and ion mobility in general systems but can also be extended to investigate more involved processes, such as photo-induced isomerization.

7.
Chemphyschem ; 20(17): 2166-2170, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31287610

ABSTRACT

We report on the specific interaction of a small diamond-like molecule, known as diamondoid, with single amino-acids forming nano/bio molecular complexes. Using time-dependent density-functional theory calculations we have studied two different relative configurations of three prototypical amino acids, phenylalanine, tyrosine, and tryptophan, with the diamondoid. The optical and charge-transfer properties of these complexes exhibit amino acid and topology specific features which can be directly utilized for in the direction of novel biomolecule detection schemes.

8.
J Comput Chem ; 38(10): 698-703, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28101985

ABSTRACT

We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc.

9.
J Comput Chem ; 36(29): 2188-92, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26399577

ABSTRACT

We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra.

10.
Phys Chem Chem Phys ; 17(34): 22009-14, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26235886

ABSTRACT

Using density functional theory calculations and ab initio molecular dynamics simulations we have studied the structures and the Raman spectra of Li2S4 clusters, which are believed to be the last polysulfide intermediates before the formation of Li2S2/Li2S during the discharge process in Li-S batteries. Raman spectra have been obtained using a new technique to estimate polarizabilities using Wannier functions. We have observed clear evidence of Li2S4→ Li2S2 transition by studying systematic changes in the simulated Raman spectra of (Li2S4)n, n = 1, 4, and 8 towards that of (Li2S2)8. Furthermore, we have shown that the dominant Raman peak of the Li2S2 cluster at ∼440 cm(-1) arises from sulfur-sulfur stretching mode. This peak has been experimentally observed in the discharged state of Li-S batteries and has also been attributed to the formation of Li2S2. We have also demonstrated that the transition is mainly due to the strong electrostatic interactions between Li2S4 monomers, which results in energy lowering by arranging the local Li(+δ)-S(-δ) dipole moments in an anti-parallel fashion.

11.
J Phys Chem B ; 119(31): 10079-86, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26174102

ABSTRACT

The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.


Subject(s)
Molecular Dynamics Simulation , Steam , Water/chemistry , Hydrogen Bonding , Kinetics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...