Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541386

ABSTRACT

Thermogravimetry coupled with thermal analysis and quadrupole mass spectroscopy TGA/DTA-QMS were primarily used to assess the oxidation susceptibility of a pool of nanocrystalline powders of the semiconductor kesterite Cu2ZnSnS4 for prospective photovoltaic applications, which were prepared via the mechanochemically assisted synthesis route from two different precursor systems. Each system, as confirmed by XRD patterns, yielded first the cubic polytype of kesterite with defunct semiconductor properties, which, after thermal annealing at 500 °C under neutral gas atmosphere, was converted to the tetragonal semiconductor polytype. The TGA/DTA-QMS determinations up to 1000 °C were carried out under a neutral argon Ar atmosphere and under a dry, oxygen-containing gas mixture of O2:Ar = 1:4 (vol.). The mass spectroscopy data confirmed that under each of the gas atmospheres, a distinctly different, multistep evolution of such oxygen-bearing gaseous compounds as sulfur oxides SO2/SO3, carbon dioxide CO2, and water vapor H2O was taking place. The TGA/DTA changes in correlation with the nature of evolving gases helped in the elucidation of the plausible chemistry linked to kesterite oxidation, both in the stage of nanopowder synthesis/storage at ambient air conditions and during forced oxidation up to 1000 °C in the dry, oxygen-containing gas mixture.

2.
Materials (Basel) ; 14(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640059

ABSTRACT

Polysiloxane networks were prepared by hydrosilylation of poly(methylvinylsiloxane) (V3 polymer) with 1,3,5,7-tetramethylcyclotetrasiloxane (D4H) at various Si-Vinyl: Si-H groups molar ratios in water-in-oil high internal phase emulsion (HIPE). Curing the emulsions followed by removal of water led to foamed cross-linked polysiloxane systems differing in the cross-linking degrees, as well as residual Si-H and Si-Vinyl group concentrations. Treatment of thus obtained materials in Pd(OAc)2 solution in tetrahydrofuran resulted in the formation of porous palladium/polymer nanocomposites with different Pd contents (1.09-1.70 wt %). Conducted investigations showed that pyrolysis of the studied materials at 1000 °C in argon atmosphere leads to porous Si-C-O and Si-C-O/Pd ceramics containing amorphous carbon and graphitic phases. Thermogravimetric (TG) analysis of the starting cross-linked polymer materials and those containing Pd nanoparticles revealed that the presence of palladium deteriorates thermal stability and decreases ceramic yields of preceramic networks. The extent of this effect depends on polymer cross-linking density in the system.

3.
Article in English | MEDLINE | ID: mdl-26196934

ABSTRACT

This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 134: 621-30, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25049171

ABSTRACT

Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.


Subject(s)
Aluminum Oxide/chemistry , Ceramics/chemistry , Silicon Dioxide/chemistry , Crystallization , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...