Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 1911, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28507291

ABSTRACT

Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F2, respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining >10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs (qFW11.1, qFW11.2 and qFW11.3) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.


Subject(s)
Cajanus/microbiology , Chromosome Mapping , Fusarium/genetics , Molecular Typing , Quantitative Trait Loci , Breeding , Genetics, Population , Genome, Fungal , Genomics/methods , High-Throughput Nucleotide Sequencing , Phenotype , Polymorphism, Single Nucleotide
2.
Plant Biotechnol J ; 15(7): 906-914, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28027425

ABSTRACT

Identification of candidate genomic regions associated with target traits using conventional mapping methods is challenging and time-consuming. In recent years, a number of single nucleotide polymorphism (SNP)-based mapping approaches have been developed and used for identification of candidate/putative genomic regions. However, in the majority of these studies, insertion-deletion (Indel) were largely ignored. For efficient use of Indels in mapping target traits, we propose Indel-seq approach, which is a combination of whole-genome resequencing (WGRS) and bulked segregant analysis (BSA) and relies on the Indel frequencies in extreme bulks. Deployment of Indel-seq approach for identification of candidate genomic regions associated with fusarium wilt (FW) and sterility mosaic disease (SMD) resistance in pigeonpea has identified 16 Indels affecting 26 putative candidate genes. Of these 26 affected putative candidate genes, 24 genes showed effect in the upstream/downstream of the genic region and two genes showed effect in the genes. Validation of these 16 candidate Indels in other FW- and SMD-resistant and FW- and SMD-susceptible genotypes revealed a significant association of five Indels (three for FW and two for SMD resistance). Comparative analysis of Indel-seq with other genetic mapping approaches highlighted the importance of the approach in identification of significant genomic regions associated with target traits. Therefore, the Indel-seq approach can be used for quick and precise identification of candidate genomic regions for any target traits in any crop species.


Subject(s)
Cajanus/genetics , Genome, Plant/genetics , Cajanus/microbiology , Fusarium/pathogenicity , Genotype , INDEL Mutation/genetics , Polymorphism, Single Nucleotide/genetics
3.
Plant Biotechnol J ; 14(5): 1183-94, 2016 May.
Article in English | MEDLINE | ID: mdl-26397045

ABSTRACT

To map resistance genes for Fusarium wilt (FW) and sterility mosaic disease (SMD) in pigeonpea, sequencing-based bulked segregant analysis (Seq-BSA) was used. Resistant (R) and susceptible (S) bulks from the extreme recombinant inbred lines of ICPL 20096 × ICPL 332 were sequenced. Subsequently, SNP index was calculated between R- and S-bulks with the help of draft genome sequence and reference-guided assembly of ICPL 20096 (resistant parent). Seq-BSA has provided seven candidate SNPs for FW and SMD resistance in pigeonpea. In parallel, four additional genotypes were re-sequenced and their combined analysis with R- and S-bulks has provided a total of 8362 nonsynonymous (ns) SNPs. Of 8362 nsSNPs, 60 were found within the 2-Mb flanking regions of seven candidate SNPs identified through Seq-BSA. Haplotype analysis narrowed down to eight nsSNPs in seven genes. These eight nsSNPs were further validated by re-sequencing 11 genotypes that are resistant and susceptible to FW and SMD. This analysis revealed association of four candidate nsSNPs in four genes with FW resistance and four candidate nsSNPs in three genes with SMD resistance. Further, In silico protein analysis and expression profiling identified two most promising candidate genes namely C.cajan_01839 for SMD resistance and C.cajan_03203 for FW resistance. Identified candidate genomic regions/SNPs will be useful for genomics-assisted breeding in pigeonpea.


Subject(s)
Cajanus/genetics , Fusarium/physiology , High-Throughput Nucleotide Sequencing/methods , Plant Diseases/immunology , Polymorphism, Single Nucleotide/genetics , Breeding , Cajanus/immunology , Chromosome Mapping , Disease Resistance/genetics , Genotype , Plant Infertility/genetics , Sequence Analysis, DNA
4.
Front Plant Sci ; 6: 793, 2015.
Article in English | MEDLINE | ID: mdl-26483810

ABSTRACT

Cytoplasmic genic male sterility (CGMS) based hybrid technology has demonstrated its immense potential in increasing the productivity of various crops, including pigeonpea. This technology has shown promise for breaking the long-standing yield stagnation in pigeonpea. There are difficulties in commercial hybrid seed production due to non-availability of field-oriented technologies such as time-bound assessment of genetic purity of hybrid seeds. Besides this, there are other routine breeding activities which are labor oriented and need more resources. These include breeding and maintenance of new fertility restorers and maintainer lines, diversification of cytoplasm, and incorporation of biotic and abiotic stress resistances. The recent progress in genomics research could accelerate the existing traditional efforts to strengthen the hybrid breeding technology. Marker based seed purity assessment, identification of heterotic groups; selection of new fertility restorers are few areas which have already been initiated. In this paper efforts have been made to identify critical areas and opportunities where genomics can play a leading role and assist breeders in accelerating various activities related to breeding and commercialization of pigeonpea hybrids.

5.
J Biosci ; 39(3): 513-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24845514

ABSTRACT

Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60 percent) could have more various symbionts than cultivated chickpea (80 percent). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.


Subject(s)
Cicer/microbiology , Crops, Agricultural/microbiology , Mesorhizobium/genetics , Phylogeny , Cicer/genetics , Crops, Agricultural/genetics , DNA, Fungal/chemistry , Genetic Variation , Mesorhizobium/physiology , Population Dynamics , RNA, Ribosomal, 16S/chemistry , Sequence Analysis, DNA , Symbiosis
6.
Front Plant Sci ; 4: 300, 2013.
Article in English | MEDLINE | ID: mdl-23986765

ABSTRACT

Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e., Medicago truncatula (Mt), Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc), Phaseolus vulgaris (Pv), and Glycine max (Gm). Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks) and non-synonymous substitutions per non-synonymous site (Ka) between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the highest distance between Mt and Pv in six legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reports some interesting observations e.g., no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...