Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Comput Med Imaging Graph ; 116: 102400, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38851079

ABSTRACT

In recent years, deep learning (DL) has emerged as a powerful tool in clinical imaging, offering unprecedented opportunities for the diagnosis and treatment of neurological disorders (NDs). This comprehensive review explores the multifaceted role of DL techniques in leveraging vast datasets to advance our understanding of NDs and improve clinical outcomes. Beginning with a systematic literature review, we delve into the utilization of DL, particularly focusing on multimodal neuroimaging data analysis-a domain that has witnessed rapid progress and garnered significant scientific interest. Our study categorizes and critically analyses numerous DL models, including Convolutional Neural Networks (CNNs), LSTM-CNN, GAN, and VGG, to understand their performance across different types of Neurology Diseases. Through particular analysis, we identify key benchmarks and datasets utilized in training and testing DL models, shedding light on the challenges and opportunities in clinical neuroimaging research. Moreover, we discuss the effectiveness of DL in real-world clinical scenarios, emphasizing its potential to revolutionize ND diagnosis and therapy. By synthesizing existing literature and describing future directions, this review not only provides insights into the current state of DL applications in ND analysis but also covers the way for the development of more efficient and accessible DL techniques. Finally, our findings underscore the transformative impact of DL in reshaping the landscape of clinical neuroimaging, offering hope for enhanced patient care and groundbreaking discoveries in the field of neurology. This review paper is beneficial for neuropathologists and new researchers in this field.

3.
Front Chem ; 12: 1361980, 2024.
Article in English | MEDLINE | ID: mdl-38629105

ABSTRACT

Background and objectives: As microbes are developing resistance to antibiotics, natural, botanical drugs or traditional herbal medicine are presently being studied with an eye of great curiosity and hope. Hence, complementary and alternative treatments for uncomplicated pelvic inflammatory disease (uPID) are explored for their efficacy. Therefore, this study determined the therapeutic efficacy and safety of Sesamum indicum Linn seeds with Rosa damascena Mill Oil in uPID with standard control. Additionally, we analyzed the data with machine learning. Materials and methods: We included 60 participants in a double-blind, double-dummy, randomized standard-controlled study. Participants in the Sesame and Rose oil group (SR group) (n = 30) received 14 days course of black sesame powder (5 gm) mixed with rose oil (10 mL) per vaginum at bedtime once daily plus placebo capsules orally. The standard group (SC), received doxycycline 100 mg twice and metronidazole 400 mg thrice orally plus placebo per vaginum for the same duration. The primary outcome was a clinical cure at post-intervention for visual analogue scale (VAS) for lower abdominal pain (LAP), and McCormack pain scale (McPS) for abdominal-pelvic tenderness. The secondary outcome included white blood cells (WBC) cells in the vaginal wet mount test, safety profile, and health-related quality of life assessed by SF-12. In addition, we used AdaBoost (AB), Naïve Bayes (NB), and Decision Tree (DT) classifiers in this study to analyze the experimental data. Results: The clinical cure for LAP and McPS in the SR vs SC group was 82.85% vs 81.48% and 83.85% vs 81.60% on Day 15 respectively. On Day 15, pus cells less than 10 in the SR vs SC group were 86.6% vs 76.6% respectively. No adverse effects were reported in both groups. The improvement in total SF-12 score on Day 30 for the SR vs SC group was 82.79% vs 80.04% respectively. In addition, our Naive Bayes classifier based on the leave-one-out model achieved the maximum accuracy (68.30%) for the classification of both groups of uPID. Conclusion: We concluded that the SR group is cost-effective, safer, and efficacious for curing uPID. Proposed alternative treatment (test drug) could be a substitute of standard drug used for Female genital tract infections.

4.
Front Pharmacol ; 15: 1331622, 2024.
Article in English | MEDLINE | ID: mdl-38410133

ABSTRACT

Objective: This study aims to determine the efficacy of the Acacia arabica (Lam.) Willd. and Cinnamomum camphora (L.) J. Presl. vaginal suppository in addressing heavy menstrual bleeding (HMB) and their impact on participants' health-related quality of life (HRQoL) analyzed using machine learning algorithms. Method: A total of 62 participants were enrolled in a double-dummy, single-center study. They were randomly assigned to either the suppository group (SG), receiving a formulation prepared with Acacia arabica gum (Gond Babul) and camphor from Cinnamomum camphora (Kafoor) through two vaginal suppositories (each weighing 3,500 mg) for 7 days at bedtime along with oral placebo capsules, or the tranexamic group (TG), receiving oral tranexamic acid (500 mg) twice a day for 5 days and two placebo vaginal suppositories during menstruation at bedtime for three consecutive menstrual cycles. The primary outcome was the pictorial blood loss assessment chart (PBLAC) for HMB, and secondary outcomes included hemoglobin level and SF-36 HRQoL questionnaire scores. Additionally, machine learning algorithms such as k-nearest neighbor (KNN), AdaBoost (AB), naive Bayes (NB), and random forest (RF) classifiers were employed for analysis. Results: In the SG and TG, the mean PBLAC score decreased from 635.322 ± 504.23 to 67.70 ± 22.37 and 512.93 ± 283.57 to 97.96 ± 39.25, respectively, at post-intervention (TF3), demonstrating a statistically significant difference (p < 0.001). A higher percentage of participants in the SG achieved normal menstrual blood loss compared to the TG (93.5% vs 74.2%). The SG showed a considerable improvement in total SF-36 scores (73.56%) compared to the TG (65.65%), with a statistically significant difference (p < 0.001). Additionally, no serious adverse events were reported in either group. Notably, machine learning algorithms, particularly AB and KNN, demonstrated the highest accuracy within cross-validation models for both primary and secondary outcomes. Conclusion: The A. arabica and C. camphora vaginal suppository is effective, cost-effective, and safe in controlling HMB. This botanical vaginal suppository provides a novel and innovative alternative to traditional interventions, demonstrating promise as an effective management approach for HMB.

5.
Drug Res (Stuttg) ; 74(3): 123-132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408478

ABSTRACT

Glipizide is an oral glucose-lowering medication that is beneficial for the treatment of type 2 diabetes. This study compiles exhaustively all accessible information on glipizide, from preclinical to clinical studies. Glipizide may be used in concert with TRAIL to treat cancer cells; in vitro studies have shown that it suppresses angiogenesis and vasculogenesis while shielding cells from glycation-induced damage. Anticonvulsant effects and modifications in the pharmacokinetics of other medications, such as Divalproex Sodium, were seen in glipizide in vivo experiments. Propranolol amplifies glipizide's hypoglycemic effect briefly in normal animals but consistently enhances it in diabetic ones. In the treatment of cancer and neurodegenerative poly(Q) illnesses, glipizide has demonstrated to offer potential therapeutic advantages. It is ineffective in preventing DENA-induced liver cancer and may cause DNA damage over time. The way glipizide interacts with genetic variants may increase the risk of hypoglycemia. Combining Syzygium cumini and ARBE to glipizide may enhance glycemic and lipid control in type 2 diabetes. Individuals with coronary artery disease who take glipizide or glyburide have an increased risk of death. The risk of muscular responses and acute pancreatitis is minimal when glipizide and dulaglutide are combined. In conclusion, glipizide has shown promising therapeutic efficacy across a variety of disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Pancreatitis , Humans , Glipizide/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Acute Disease , Blood Glucose , Pancreatitis/chemically induced , Pancreatitis/drug therapy
6.
Article in English | MEDLINE | ID: mdl-37138478

ABSTRACT

Nanotechnology is a great choice for medical research, and the green synthesis approach is a novel and better way to synthesize nanoparticles. Biological sources are cost-effective, environmentally friendly, and allow large-scale production of nanoparticles. Naturally obtained 3 ß-hydroxy-urs-12-en-28-oic acids reported for neuroprotective and dendritic structure are reported as solubility enhancers. Plants are free from toxic substances and act as natural capping agents. In this review, the pharmacological properties of ursolic acid (UA) and the structural properties of the dendritic structure are discussed. UA acid appears to have negligible toxicity and immunogenicity, as well as favorable biodistribution, according to the current study, and the dendritic structure improves drug solubility, prevents drug degradation, increases circulation time, and potentially targets by using different pathways with different routes of administration. Nanotechnology is a field in which materials are synthesized at the nanoscale. Nanotechnology could be the next frontier of humankind's technological advancement. Richard Feynman first used the term 'Nanotechnology' in his lecture, "There is Plenty of Room at the Bottom," on 29th December, 1959, and since then, interest has increased in the research on nanoparticles. Nanotechnology is capable of helping humanity by solving major challenges, particularly in neurological disorders like Alzheimer's disease (AD), the most prevalent type, which may account for 60-70% of cases. Other significant forms of dementia include vascular dementia, dementia with Lewy bodies (abnormal protein aggregates that form inside nerve cells), and a number of illnesses that exacerbate frontotemporal dementia. Dementia is an acquired loss of cognition in several cognitive domains that are severe enough to interfere with social or professional functioning. However, dementia frequently co-occurs with other neuropathologies, typically AD with cerebrovascular dysfunction. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some neurons. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders cause cognitive impairment and dementia, and as average life expectancy rises globally, their effects become more noticeable.

7.
Pharmaceuticals (Basel) ; 16(4)2023 04 07.
Article in English | MEDLINE | ID: mdl-37111319

ABSTRACT

Nanotechnology has emerged as an inspiring tool for the effective delivery of drugs to help treat Coronary heart disease (CHD) which represents the most prevalent reason for mortality and morbidity globally. The current study focuses on the assessment of the cardioprotective prospective ofanovel combination nanoformulation of sericin and carvedilol. Sericin is a silk protein obtained from Bombyx mori cocoon and carvedilol is a synthetic nonselective ß-blocker. In this present study, preparation of chitosan nanoparticles was performed via ionic gelation method and were evaluated for cardioprotective activity in doxorubicin (Dox)-induced cardiotoxicity. Serum biochemical markers of myocardial damage play a substantial role in the analysis of cardiovascular ailments and their increased levels have been observed to be significantly decreased in treatment groups. Treatment groups showed a decline in the positivity frequency of the Troponin T test as well. The NTG (Nanoparticle Treated Group), CSG (Carvedilol Standard Group), and SSG (Sericin Standard Group) were revealed to have reduced lipid peroxide levels (Plasma and heart tissue) highly significantly at a level of p < 0.01 in comparison with the TCG (Toxic Control Group). Levels of antioxidants in the plasma and the cardiac tissue were also established to be within range of the treated groups in comparison to TCG. Mitochondrial enzymes in cardiac tissue were found to be elevated in treated groups. Lysosomal hydrolases accomplish a significant role in counteracting the inflammatory pathogenesis followed by disease infliction, as perceived in the TCG group. These enzyme levels in the cardiac tissue were significantly improved after treatment with the nanoformulation. Total collagen content in the cardiac tissue of the NTG, SSG, and CSG groups was established to be highly statistically significant at p < 0.001 as well as statistically significant at p < 0.01, respectively. Hence, the outcomes of this study suggest that the developed nanoparticle formulation is effective against doxorubicin-induced cardiotoxicity.

8.
Drug Res (Stuttg) ; 73(5): 247-250, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36889338

ABSTRACT

The pathophysiological processes of dementia and cognitive impairment are linked to advanced glycation end products (AGEs) and their receptor (RAGE).The neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by amyloid beta (Aß) deposition, are the hallmarks of Alzheimer's disease (AD), a progressive neurodegenerative condition. Advanced glycation end products that are produced as a result of vascular dysfunction are bound by the receptor for advanced glycation end products (RAGE). Dementia and cognitive impairment could develop when RAGE binds to Aß and produces reactive oxygen species, aggravating Aß buildup and ultimately resulting in SPs and NFTs. RAGE could be a more powerful biomarker than Aß because it is implicated in early AD. The resident immune cells in the brain known as microglia are essential for healthy brain function. Microglia is prominent in the amyloid plaques' outside border as well as their central region in Alzheimer's disease. Microglial cells, in the opinion of some authors, actively contribute to the formation of amyloid plaques. In this review, we first discuss the early diagnosis of dementia and cognitive impairment, and then detail the interaction between RAGE and Aß and Tau that is necessary to cause dementia and cognitive impairment pathology, and it is anticipated that the creation of RAGE probes will help in the diagnosis and treatment of dementia and cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Receptor for Advanced Glycation End Products , Humans , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Glycation End Products, Advanced/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Receptor for Advanced Glycation End Products/metabolism
9.
Horm Metab Res ; 55(1): 7-24, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36599357

ABSTRACT

Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Dyslipidemias , Humans , Drug Repositioning , Obesity , Cardiovascular Diseases/drug therapy
10.
Avicenna J Phytomed ; 12(5): 457-474, 2022.
Article in English | MEDLINE | ID: mdl-36249455

ABSTRACT

Objective: Medicinal plants having antioxidant potential possess numerous constituents which are responsible for different beneficial effects and are used as an alternative resource of medicine to lessen diseases linked with oxidative stress. Flavonoids are identified in the plants since ages and display wide spectrum of biological actions that might be able to stimulate the steps which are disturbed in different diseases. Flavonoids are significant natural compounds with various biologic properties, among which the most common is the anti-oxidant potential. Citrus flavonoids establish an important stream of flavonoids. Naringin, very common flavonoids present in the diet, belongs to the family of flavanone. It is the principal constituent of citrus family that contains flavonoids for example tomatoes, grapefruits and oranges. Materials and Methods: In this article, we reviewed naringin with respect to sources, chemical property, pharmacokinetics, pharmacological activity, and novel formulations. The literature survey has been done by searching different databases such as Psyc INFO, Science Direct, PubMed, EMBASE, Google, Google Scholar, Medline. Results: Naringin is known to behave as an antioxidant and possess anti-inflammatory, anti-apoptotic, anti-atherosclerotic, neuroprotective, anti-psychotic, anti-asthmatic, anti-diabetic, hepatoprotective, anti-tussive, cardioprotective, and anti-obesity activity. Further clinical studies using large sample sizes remain essential to obtain the appropriate dose and form of naringin for averting diseases. Furthermore, the therapeutic approach of these bioflavonoids is significantly inappropriate due to the lack of clinical evidence. Different plants must be explored further to find these bioflavonoids in them. Conclusion: The results of this exploration provides biological actions of bioflavonoid (naringin), predominantly on pharmacological and novel dosage forms of naringin.

11.
Life Sci ; 307: 120860, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940220

ABSTRACT

Amidst several pathophysiological cascades, Advanced Glycation End products (AGEs) have been identified as a pivotal aetiology behind the pathogenesis and progression of cardiovascular disorders, by inducing oxidative stress and inflammation of myocardial and vascular tissues. Non-enzymatic glycation of reducing sugars with amino acids in proteins, lipids, and nucleic acids produce AGEs, which are a diverse set of compounds. Although AGEs are mostly generated endogenously, current research suggests that nutrition is a major exogenous source of AGEs. Extracellular and intracellular structure and function are affected by the presence and accumulation of AGEs in several cardiac cell types. AGEs give rise to several microvascular and macrovascular problems by establishing cross-links between molecules in the extracellular matrix's basement membrane as well as interacting with receptors for advanced glycation end products (RAGE). The transcription factor nuclear factor kappa B and its RAGE target genes are upregulated when RAGE is activated by AGEs. Engagement increases oxidative stress and triggers inflammatory and fibrotic responses, all of which contribute to the onset and progression of life-threatening cardiovascular diseases. This article discusses the probable targets of glycation in cardiac cells, as well as the underlying mechanisms that lead to heart failure.


Subject(s)
Cardiovascular Diseases , Nucleic Acids , Amino Acids , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Glycation End Products, Advanced/metabolism , Humans , Lipids , NF-kappa B/physiology , Receptor for Advanced Glycation End Products/metabolism , Sugars
12.
Drug Res (Stuttg) ; 72(9): 477-486, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35868336

ABSTRACT

In 1976, Japanese microbiologist Akira Endo discovered the first statin as a product of the fungus Penicillium citrinum that inhibited the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Their primary mode of action is to lower the blood cholesterol by decreasing hepatic cholesterol production, which upregulates hepatic low-density lipoprotein (LDL) receptors and increases LDL-cholesterol clearance. In addition to cholesterol lowering, statins inhibit other downstream products of the mevalonate pathway, causing the so-called pleiotropic effects. As a result of their pleiotropic effects statins modulate virtually all known processes of atherosclerosis and have beneficial effects outside the cardiovascular system Statins inhibit the post-translational prenylation of small GTP-binding proteins such as Rho, Rac, as well as their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases since they suppress the synthesis of isoprenoid intermediates in the cholesterol biosynthetic pathway altering the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, production of proinflammatory cytokines, reactive oxygen species, platelet reactivity, development of cardiac hypertrophy and fibrosis in cell culture and animal experiments. Inhibition of Rho and Rho-associated coiled-coil containing protein kinase (ROCK), has emerged as the principle mechanisms underlying the pleiotropic effects of statins. However, the relative contributions of statin pleiotropy to clinical outcomes are debatable and difficult to measure because the amount of isoprenoid inhibition by statins corresponds to some extent with the amount of LDL-cholesterol decrease. This article examines some of the existing molecular explanations underlying statin pleiotropy and discusses if they have clinical relevance in cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Cholesterol, LDL , Cholesterol , Terpenes
13.
Front Cell Infect Microbiol ; 12: 836070, 2022.
Article in English | MEDLINE | ID: mdl-35237534

ABSTRACT

The Gram-positive bacterial pathogen, Streptococcus pneumoniae is a major global health threat that kills over one million people worldwide. The pneumococcus commonly colonizes the nasopharynx asymptomatically as a commensal, but is also capable of causing a wide range of life-threatening diseases such as pneumonia, meningitis and septicemia upon migration into the lower respiratory tract and spread to internal organs. Emergence of antibiotic resistant strains and non-vaccine serotypes has led to the classification of pneumococcal bacteria as a priority pathogen by the World Health Organization that needs urgent research into bacterial pathogenesis and development of novel vaccine strategies. Extracellular vesicles are spherical membrane bound structures that are released by both pathogen and host cells, and influence bacterial pathogenesis as well as the immune response. Recent studies have found that while bacterial vesicles shuttle virulence factors and toxins into host cells and regulate inflammatory responses, vesicles released from the infected host cells contain both bacterial and host proteins that are antigenic and immunomodulatory. Bacterial membrane vesicles have great potential to be developed as cell-free vaccine candidates in the future due to their immunogenicity and biostability. Host-derived vesicles isolated from patient biofluids such as blood and bronchoalveolar lavage could be used to identify potential diagnostic biomarkers as well as engineered to deliver desired payloads to specific target cells for immunotherapy. In this review, we summarize the recent developments on the role of bacterial and host vesicles in pneumococcal infections and future prospects in developing novel therapeutics and diagnostics for control of invasive pneumococcal diseases.


Subject(s)
Extracellular Vesicles , Pneumococcal Infections , Extracellular Vesicles/metabolism , Humans , Immunologic Factors/metabolism , Pneumococcal Infections/metabolism , Pneumococcal Vaccines , Streptococcus pneumoniae
14.
J Basic Clin Physiol Pharmacol ; 33(1): 45-54, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34280963

ABSTRACT

The dissemination of the 2019 novel coronavirus (2019-nCoV) is presenting the planet with a new health emergency response or threat to health. The virus emerged in bats and was disseminated to humans in December 2019 via still unknown intermediate species in Wuhan, China. It is disseminated by inhalation or breaks out with infected droplets and the incubation period is between 2 and 14 days. The symptoms usually include high body temperature, cough, sore throat, dyspnea, low energy or tiredness, and weakness. The condition is moderate in most people; but in the elderly and those with comorbidities, it advances to pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ failure. Popular research work includes normal/low WBC with upraised C-reactive protein (CRP). Treatment is generally supportive and requires home seclusion of suspected persons and rigorous infection control methods at hospitals. The Covid-19 has lower fatality than SARS and MERS. Among the proposed therapeutic regimen, hydroxychloroquine, chloroquine, remdisevir, azithromycin, toclizumab, and cromostat mesylate have shown promising results, and the limited benefit was seen with lopinavir-ritonavir treatment in hospitalized adult patients with severe COVID-19. Early development of the SARS-CoV-2 vaccine started based on the full-length genome analysis of severe acute respiratory syndrome coronavirus. Several subunit vaccines, peptides, nucleic acids, plant-derived, and recombinant vaccines are under pipeline. Research work, development of new medicines and vaccines, and efforts to reduce disease morbidity and mortality must be encouraged to improve our position in the fight against this disease and to protect human life.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2
15.
J Cancer Res Ther ; 17(2): 327-335, 2021.
Article in English | MEDLINE | ID: mdl-34121673

ABSTRACT

Turmeric exhibits a big promise as a therapeutic agent in the management of oral submucous fibrosis (OSMF). The primary aim of our study is to synthesize the evidence of the use of turmeric/curcumin in the management of OSMF. The secondary goal of this study is to assess the limitations of previous studies to identify gaps in evidence for future research and give an evidence-based recommendation regarding the usage of turmeric/curcumin for OSMF patients and outline the direction of research. A comprehensive search of PubMed, Web of Science, Scopus, Cochrane Library database, Google Scholar, clinical trial registries, and hand searching was conducted from inception until December 2018. This systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (guidelines). In this review, 11 articles were selected for qualitative analysis and 3 out of 11 were selected for meta-analysis. Of these 11 studies, involving 428 patients, 7 were randomized control trials (RCTs), 1 was a nonrandomized trial, and 3 were observational studies. Turmeric was found to be effective in reducing signs and symptoms of OSMF in all 11 studies. All the studies included in this review have reported improvement in mouth opening after treatment with turmeric formulations. This could also be concluded from the meta-analysis of three RCTs. Similar improvement in tongue protrusion, burning sensation, and cheek flexibility has been reported. The lack of reliable evidence for the effectiveness of turmeric for the management of OSMF is illustrated by the paucity and poor methodological quality of studies retrieved for this review. We recommend that RCTs are needed using larger sample size with longer duration follow-up with special attention to the recurrence of signs and symptoms.


Subject(s)
Curcumin/therapeutic use , Oral Submucous Fibrosis/drug therapy , Data Accuracy , Humans , Observational Studies as Topic , Randomized Controlled Trials as Topic , Treatment Outcome
16.
J Oral Biol Craniofac Res ; 10(2): 166-170, 2020.
Article in English | MEDLINE | ID: mdl-32489816

ABSTRACT

BACKGROUND: Oral submucous fibrosis (OSMF) is a premalignant condition mainly caused by areca nut chewing and is characterized by progressive fibrosis of submucosal tissues and epithelial atrophy. Activation of transforming growth factor beta (TGF-ß) signaling is considered main causative event for increased collagen production and fibrosis. In this study, molecular pathogenesis of OSMF was investigated based on the expression of the TGF-ß genes in OSMF tissues compared to normal controls. METHODS: A total of 33 OSMF and 10 normal tissues were collected from patients and their clinic-epidemiological data was recorded. The expression of TGF-ß isoform genes- TGF ß1, TGF ß2, TGF ß3 and its receptor TGF ßR1, TGF ßR2 was studied by real time polymerase chain reaction (PCR). Comparison of the expression of these genes among normal controls and OSMF patients was done. The PCR results were confirmed by histopathological and immunohistochemical staining. RESULTS: The histological changes included atrophic epithelium, loss of rete ridges, presence of inflammatory cells and dense collagen bundles in connective tissue. PCR showed statistically significant upregulation of TGF-ß isoforms in OSMF as compared to normal tissues. Of the three isoforms, maximum fold change was observed in TGF-ß1. Similarly, both TGF-ßR1 and TGF-ßR2 were found to be elevated in OSMF tissues compared to normal. The semi-quantitative analysis by immunohistochemical staining revealed statistically significant difference between normal and OSMF tissues. CONCLUSION: TGF-ß signaling plays a major role in the molecular pathogenesis of OSMF as shown by increased mRNA expression of all the three TGF-ß isotypes and their receptors.

17.
Drug Res (Stuttg) ; 70(5): 183-187, 2020 May.
Article in English | MEDLINE | ID: mdl-32176922

ABSTRACT

Past few decades have emerged as the era of nanotechnology worldwide leading to an extensive research in pharmaceutical science as well as other fields. Nanoformulations have shown a promising future in therapeutics and theronostics. Protein based nanoformulations attracting attention in research as it can be used as therapeutics as well as carrier. Carrier based protein nanoformulatios are capable of accommodating range of therapeutics such as dyes, drugs, contrast agents and inorganic nanoclusters makings its application vast. The nano size of formulation enables it to reach the desired places by some modification. This paper reviewed the various protein based nanoformulation. Human serum albumin, Bovine serum albumin, soy protein isolate, phycocyanin, casein, bromelein, collagen and sericin based nanoformulations are briefly discussed. Various limitations of these proteins can be diminished by developing it in nano form and emerged as promising candidate as carrier as well as therapeutics in drug delivery advancements.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/therapeutic use , Proteins/therapeutic use , Theranostic Nanomedicine/methods , Humans , Nanoparticles/chemistry , Proteins/chemistry , Theranostic Nanomedicine/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...