Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
3 Biotech ; 14(6): 166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817736

ABSTRACT

The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.

2.
J Plant Physiol ; 289: 154080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699261

ABSTRACT

Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.


Subject(s)
Fruit , Solanum lycopersicum , Promoter Regions, Genetic/genetics , Transgenes , Fruit/genetics , Fruit/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Genetic Engineering , Gene Expression Regulation, Plant/genetics , Glucuronidase/genetics , Glucuronidase/metabolism
3.
J Genet Eng Biotechnol ; 21(1): 3, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36630019

ABSTRACT

BACKGROUND: CRISPR/Cas9 is the most powerful and versatile genome-editing tool that permits multiplexed-targeted gene modifications for the genetic enhancement of oil palm. Multiplex genome-editing has recently been developed for modifying multiple loci in a gene or multiple genes in a genome with high precision. This study focuses on the development of high-oleic oil palm, the primary target trait for healthy low-saturated oil. To achieve this, the fatty acid desaturase 2 (FAD2) and palmitoyl-acyl carrier protein thioesterase (PAT) genes, both of which are associated with fatty acid metabolism biosynthesis pathways in oil palm, need to be knocked out. The knockout of FAD2 and PAT leads to an accumulation of oleic acid content in oil palms. RESULTS: A total of four single-guide RNAs (sgRNAs) were designed in silico based on the genomic sequences of EgFAD2 and EgPAT. Using robust plant CRISPR/Cas9 vector technology, multiple sgRNA expression cassettes were efficiently constructed into a single-binary CRISPR/Cas9 vector to edit the EgFAD2 and EgPAT genes. Each of the constructed transformation vectors was then delivered into oil palm embryogenic calli using the biolistic, Agrobacterium-mediated, and PEG-mediated protoplast transformation methods. Sequence analysis of PCR products from 15 samples confirmed that mutations were introduced at four target sites of the oil palm EgFAD2 and EgPAT genes. Single- and double-knockout mutants of both genes were generated, with large and small deletions within the targeted regions. Mutations found at EgFAD2 and EgPAT target sites indicate that the Cas9/sgRNA genome-editing system effectively knocked out both genes in oil palm. CONCLUSION: This technology is the first in oil palm to use CRISPR/Cas9 genome-editing to target high-oleic-associated genes. These findings showed that multiplex genome-editing in oil palm could be achieved using multiple sgRNAs. Targeted mutations detected establish that the CRISPR/Cas9 technology offers a great potential for oil palm.

4.
Mol Biol Rep ; 50(3): 2367-2379, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36580194

ABSTRACT

BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today. METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm. CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.


Subject(s)
Ganoderma , Arecaceae/genetics , Arecaceae/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Ganoderma/genetics , Lanosterol/metabolism , Plant Diseases/microbiology
5.
Methods Mol Biol ; 2464: 187-202, 2022.
Article in English | MEDLINE | ID: mdl-35258834

ABSTRACT

The protocol outlined in this chapter describes a detailed procedure for protoplast isolation and transformation using polyethylene glycol (PEG)-mediated transfection and DNA microinjection, highlighting also the critical steps associated with the method. Briefly, we will describe the efficient isolation of protoplasts from 3-month-old suspension calli collected at 14 days after cultured. Digestion of the calli with an optimal composition of enzyme solution yielded over 2 × 106 protoplasts/mL with the viability of more than 80%. The concentrations of DNA, PEG, and magnesium chloride and application of heat shock treatment are the crucial determinants for efficient PEG-mediated transfection. Using the optimal PEG transfection conditions, a transfection efficiency of more than 20% could be obtained. At the same time, protoplasts embedded in alginate layer cultured for 3 days and injected with 100 ng/µL of total DNA solution are the optimal factors for microinjection. We successfully regenerated the injected protoplasts to calli expressing green fluorescent protein (GFP) signals when cultured in optimal medium and cultivation procedures.


Subject(s)
Polyethylene Glycols , Protoplasts , DNA/genetics , DNA/metabolism , Microinjections , Polyethylene Glycols/metabolism , Protoplasts/metabolism , Transfection
7.
J Genet Eng Biotechnol ; 19(1): 86, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34115267

ABSTRACT

BACKGROUND: Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. RESULTS: Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system's efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. CONCLUSION: The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm.

8.
Folia Microbiol (Praha) ; 66(4): 677-688, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34041694

ABSTRACT

The basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G. boninense. Based on the minimal inhibitory concentration study, 60 µg/mL and above of hygromycin were effective to completely inhibit G. boninense growth. Approximately 5.145 × 107 cells/mL of protoplasts with the viability of 97.24% was successfully obtained from G. boninense mycelium tissue. The PEG-mediated G. boninense protoplast transformation using 1 µg of transformation vector, 25% of PEG solution, 10 min of pre-transformation incubation, and 30 min of post-transformation incubation has improved the transformation rate as compared with the previous reported protocols for other basidiomycete fungi. Optimization of four transformation parameters has improved the transformation efficiency of G. boninense from an average of 2 to 67 putative transformants. The presence of hygromycin phosphotransferase (hpt) and enhanced green fluorescent protein (eGFP) genes in the putative transformants was detected by PCR and verified by gene sequence analysis. Southern hybridization result further confirmed the integration of hpt gene in G. boninense transformants, and the green fluorescent signal was detected in the G. boninense transformants under the microscopic analysis. The establishment of this transformation system will accelerate the gene function studies of G. boninense especially those genes that may contribute to the pathogenesis of this fungus in oil palm.


Subject(s)
Ganoderma , Molecular Biology , Polyethylene Glycols , Protoplasts , Transformation, Genetic , Ganoderma/drug effects , Ganoderma/genetics , Molecular Biology/methods , Polyethylene Glycols/metabolism , Protoplasts/drug effects , Protoplasts/metabolism
9.
3 Biotech ; 10(12): 530, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33214977

ABSTRACT

Cetyltrimethylammonium bromide (CTAB) is the preferred detergent in RNA extraction of oil palm tissues. However, the CTAB-based protocol is time-consuming. In this study, a combination of the CTAB-based method and silica-based purification reduced the extraction time from two days to five hours. Quality of total RNA from 27 different tissues of oil palm was shown to have an RNA integrity number (RIN) value of more than seven. The extracted RNA was evaluated by RT-qPCR using three reference oil palm genes (GRAS, CYP2, and SLU7) and three putative mesocarp-specific transcripts annotated as WRKY DNA-binding protein 70 (WRKY-70), metallothionein (MT) and pentatricopeptide repeat (PPR) genes. Tissue-specific expression profiling across complete developmental stages of mesocarp and vegetative tissues was determined in this study. Overall, the RNA extraction protocol described here is rapid, simple and yields good quality RNAs from oil palm tissues.

10.
Molecules ; 25(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630515

ABSTRACT

Palm oil production from oil palm (Elaeis guineensis Jacq.) is vital for the economy of Malaysia. As of late, sustainable production of palm oil has been a key focus due to demand by consumer groups, and important progress has been made in establishing standards that promote good agricultural practices that minimize impact on the environment. In line with the industrial goal to build a traceable supply chain, several measures have been implemented to ensure that traceability can be monitored. Although the palm oil supply chain can be highly complex, and achieving full traceability is not an easy task, the industry has to be proactive in developing improved systems that support the existing methods, which rely on recorded information in the supply chain. The Malaysian Palm Oil Board (MPOB) as the custodian of the palm oil industry in Malaysia has taken the initiative to assess and develop technologies that can ensure authenticity and traceability of palm oil in the major supply chains from the point of harvesting all the way to key downstream applications. This review describes the underlying framework related to palm oil geographical traceability using various state-of-the-art analytical techniques, which are also being explored to address adulteration in the global palm oil supply chain.


Subject(s)
Arecaceae/chemistry , Conservation of Natural Resources , Palm Oil/analysis , Palm Oil/chemistry , Quality Control , Food Quality , Geography
11.
Front Plant Sci ; 6: 727, 2015.
Article in English | MEDLINE | ID: mdl-26442041

ABSTRACT

DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.

12.
Front Plant Sci ; 6: 598, 2015.
Article in English | MEDLINE | ID: mdl-26322053

ABSTRACT

Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally produced by bacterial cells, have been produced in the cells of more than 15 plant species. Since the production of biodegradable plastics and the synthesis of oil in plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB in oil bearing crops, such as oil palm, will be advantageous. In this study, three bacterial genes, bktB, phaB, and phaC, which are required for the synthesis of PHB and selectable marker gene, bar, for herbicide Basta resistant, were transformed into embryogenic calli. A number of transformed embryogenic lines resistant to herbicide Basta were obtained and were later regenerated to produce few hundred plantlets. Molecular analyses, including polymerase chain reaction (PCR), Southern blot, and real-time PCR have demonstrated stable integration and expression of the transgenes in the oil palm genome. HPLC and Nile blue A staining analyses confirmed the synthesis of PHB in some of the plantlets.

13.
Plant Cell Rep ; 34(4): 533-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25480400

ABSTRACT

Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.


Subject(s)
Arecaceae/genetics , Biotechnology/methods , Lipids/analysis , Plant Oils/chemistry , Arecaceae/enzymology , Lipids/biosynthesis , Palm Oil , Plants, Genetically Modified , Promoter Regions, Genetic/genetics
14.
PLoS One ; 9(5): e96831, 2014.
Article in English | MEDLINE | ID: mdl-24821306

ABSTRACT

BACKGROUND: Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. METHODOLOGY/PRINCIPAL FINDINGS: We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. CONCLUSIONS/SIGNIFICANCE: We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.


Subject(s)
Microinjections/methods , Plant Oils/metabolism , Plants, Genetically Modified/genetics , Protoplasts/metabolism , Palm Oil , Plants, Genetically Modified/cytology , Transfection/methods , Transformation, Genetic/genetics
15.
Plant Sci ; 210: 118-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23849119

ABSTRACT

Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10µM naphthalene acetic acid, 2µM 2,4-dichlorophenoxyacetic acid, 2µM indole-3-butyric acid, 2µM gibberellic acid and 2µM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.


Subject(s)
Arecaceae/physiology , Culture Media , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Protoplasts/physiology , Arecaceae/growth & development , Cell Division , Palm Oil , Plant Oils , Protoplasts/cytology , Protoplasts/drug effects , Regeneration , Sepharose
16.
J Agric Food Chem ; 60(45): 11201-10, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23116142

ABSTRACT

The palm oil industry generates several byproducts, and more than half of the dry weight of the waste is of oil palm leaf whereby the tissue is underutilized. Recently, several research studies found promising potential of oil palm fronds as a source of nutraceutical due to its bioactive properties. However, the chemical composition of the tissue is still not deciphered. Using reversed-phase liquid chromatography (LC) electrospray mass spectrometry (ESI-MS), glycosylated apigenin and luteolin were separated and identified from oil palm (Elaeis guineensis Jacq.) leaf and structures of the constituents were elucidated by collision-induced dissociation (CID) tandem MS. From 28 derivatives of the flavones, 9 compounds were conjugated with hydroxymethylglutaric (HMG) acid. Improved knowledge on oil palm especially on bioactive component of the leaf tissue will allow correlation of its beneficial effects and further promotes efficient utilization of this agriculture byproduct.


Subject(s)
Apigenin/chemistry , Arecaceae/chemistry , Luteolin/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Chromatography, Reverse-Phase/methods , Molecular Structure , Plant Leaves/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
17.
Methods Mol Biol ; 847: 163-75, 2012.
Article in English | MEDLINE | ID: mdl-22351007

ABSTRACT

The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses.


Subject(s)
Biolistics/methods , Cocos/genetics , Mannose-6-Phosphate Isomerase/genetics , Plants, Genetically Modified/genetics , DNA, Plant , Gene Transfer Techniques , Genetic Markers , Mannose/metabolism , Palm Oil , Plant Oils
18.
Methods Mol Biol ; 847: 177-88, 2012.
Article in English | MEDLINE | ID: mdl-22351008

ABSTRACT

Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants.


Subject(s)
Agrobacterium tumefaciens/genetics , Aminobutyrates/pharmacology , Biolistics/methods , Cocos/genetics , Gene Transfer Techniques , Herbicide Resistance/genetics , Acetophenones/pharmacology , Herbicides/pharmacology , Palm Oil , Plant Oils , Plants, Genetically Modified , Plasmids/genetics , Promoter Regions, Genetic , Transformation, Genetic , Ubiquitin/genetics , Zea mays/genetics
19.
Bioinformation ; 8(3): 151-7, 2012.
Article in English | MEDLINE | ID: mdl-22368388

ABSTRACT

UNLABELLED: Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the ß-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - ß-glucuronidase GUS reporter gene.

20.
Plant Physiol Biochem ; 49(7): 701-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21549610

ABSTRACT

We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.


Subject(s)
Arecaceae/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Amino Acid Sequence , Arecaceae/cytology , Arecaceae/physiology , Base Sequence , Biolistics , Blotting, Northern , Cloning, Molecular , DNA, Plant/chemistry , DNA, Plant/genetics , Flowers/genetics , Flowers/physiology , Genes, Reporter , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , Plasmids/genetics , Polymerase Chain Reaction , RNA, Plant/genetics , Sequence Analysis, DNA , Stress, Physiological , Nicotiana/genetics , Nicotiana/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...