Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674845

ABSTRACT

Nitrate (NO3-) obtained from the diet is converted to nitrite (NO2-) and subsequently to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and sclera exhibited the capability to reduce nitrate to nitrite. To gain deeper insights into nitrate metabolism in porcine eyes, our current study involved feeding pigs either NaCl or Na15NO3 and assessing the levels of total and 15N-labeled NO3-/NO2- in various ocular tissues. Three hours after Na15NO3 ingestion, a marked increase in 15NO3- and 15NO2- was observed in all parts of the eye; in particular, the aqueous and vitreous humor showed a high 15NO3- enrichment (77.5 and 74.5%, respectively), similar to that of plasma (77.1%) and showed an even higher 15NO2- enrichment (39.9 and 35.3%, respectively) than that of plasma (19.8%). The total amounts of NO3- and NO2- exhibited patterns consistent with those observed in 15N analysis. Next, to investigate whether nitrate or nitrite accumulate proportionally after multiple nitrate treatments, we measured nitrate and nitrite contents after supplementing pigs with Na15NO3 for five consecutive days. In both 15N-labeled and total nitrate and nitrite analysis, we did not observe further accumulation of these ions after multiple treatments, compared to a single treatment. These findings suggest that dietary nitrate supplementation exerts a significant influence on nitrate and nitrite levels and potentially NO levels in the eye and opens up the possibility for the therapeutic use of dietary nitrate/nitrite to enhance or restore NO levels in ocular tissues.


Subject(s)
Dietary Supplements , Nitrates , Nitrites , Animals , Nitrates/metabolism , Swine , Nitrites/metabolism , Eye/metabolism , Nitrogen Isotopes , Cornea/metabolism , Diet , Aqueous Humor/metabolism , Vitreous Body/metabolism , Nitric Oxide/metabolism , Animal Feed/analysis
2.
Sci Rep ; 10(1): 13166, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32759980

ABSTRACT

Nitric oxide (NO) signaling has been studied in the eye, including in the pathophysiology of some eye diseases. While NO production by nitric oxide synthase (NOS) enzymes in the eye has been characterized, the more recently described pathways of NO generation by nitrate (NO3-) and nitrite (NO2-) ions reduction has received much less attention. To elucidate the potential roles of these pathways, we analyzed nitrate and nitrite levels in components of the eye and lacrimal glands, primarily in porcine samples. Nitrate and nitrite levels were higher in cornea than in other eye parts, while lens contained the least amounts. Lacrimal glands exhibited much higher levels of both ions compared to other organs, such as liver and skeletal muscle, and even to salivary glands which are known to concentrate these ions. Western blotting showed expression of sialin, a known nitrate transporter, in the lacrimal glands and other eye components, and also xanthine oxidoreductase, a nitrate and nitrite reductase, in cornea and sclera. Cornea and sclera homogenates possessed a measurable amount of nitrate reduction activity. These results suggest that nitrate ions are concentrated in the lacrimal glands by sialin and can be secreted into eye components via tears and then reduced to nitrite and NO, thereby being an important source of NO in the eye.


Subject(s)
Cornea/metabolism , Lacrimal Apparatus/metabolism , Nitrates/metabolism , Nitrites/metabolism , Sclera/metabolism , Animals , Female , Male , Nitrate Reductase/metabolism , Nitric Oxide/metabolism , Nitrite Reductases/metabolism , Organic Anion Transporters/metabolism , Signal Transduction , Swine , Symporters/metabolism , Xanthine Dehydrogenase/metabolism
3.
Lab Invest ; 91(4): 519-26, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21042291

ABSTRACT

Tissue factor (TF) is the primary initiator of blood coagulation. In addition to hemostasis, TF can initiate intracellular signaling and promote inflammation and angiogenesis, the key processes underlying the pathogenesis of age-related macular degeneration (AMD). AMD, the leading cause of irreversible blindness among the elderly, involves many genetic and environmental risk factors, including oxidative stress and inflammation. In this study, TF expression was examined in human AMD tissue and in the eyes of a model of AMD, the Ccl2(-/-)/Cx3cr1(-/-) (DKO) mouse, as well as in the ARPE-19 cell line after lipopolysaccharide (LPS) and H(2)O(2) stimulation. Total RNA was extracted from tissue samples and further analyzed by real-time RT-PCR. Immunohistochemistry was performed to evaluate TF protein expression. In the human retina, a 32-fold increase of TF mRNA expression was detected in AMD macular lesions compared with normal maculae. TF protein expression was also enhanced in human AMD maculae. Similarly, TF transcript and protein expression were moderately increased in retinal lesions, neuroretinal tissue, and cultured RPE cells of DKO mice compared with age-matched wild-type mice. TF expression level correlated with age in both wild-type and DKO mice. In order to better understand how AMD might lead to enhanced TF expression, 1, 5, and 10 µg/ml LPS as well as 100 and 200 µM H(2)O(2) were used to stimulate ARPE-19 cells for 24 and 2 h, respectively. LPS treatment consistently increased TF transcript and protein expression. H(2)O(2) alone or in combination with LPS also moderately enhanced TF expression. These results indicate that upregulated TF expression may be associated with AMD, and inflammatory and oxidative stress may contribute to TF expression in AMD eyes.


Subject(s)
Macular Degeneration/metabolism , Thromboplastin/metabolism , Aging/metabolism , Animals , CX3C Chemokine Receptor 1 , Cells, Cultured , Chemokine CCL2/deficiency , Drug Combinations , Humans , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Lipopolysaccharides/pharmacology , Macula Lutea/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , RNA, Messenger/metabolism , Receptors, Chemokine/deficiency , Retina/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Thromboplastin/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...