Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902413

ABSTRACT

Staphylococcus aureus biofilms are resistant to both antibiotics and disinfectants. As Staphylococci cell walls are an important defence mechanism, we sought to examine changes to the bacterial cell wall under different growth conditions. Cell walls of S. aureus grown as 3-day hydrated biofilm, 12-day hydrated biofilm, and 12-day dry surface biofilm (DSB) were compared to cell walls of planktonic organisms. Additionally, proteomic analysis using high-throughput tandem mass tag-based mass spectrometry was performed. Proteins involved in cell wall synthesis in biofilms were upregulated in comparison to planktonic growth. Bacterial cell wall width (measured by transmission electron microscopy) and peptidoglycan production (detected using a silkworm larva plasma system) increased with biofilm culture duration (p < 0.001) and dehydration (p = 0.002). Similarly, disinfectant tolerance was greatest in DSB, followed by 12-day hydrated biofilm and then 3-day biofilm, and it was least in the planktonic bacteria--suggesting that changes to the cell wall may be a key factor for S. aureus biofilm biocide resistance. Our findings shed light on possible new targets to combat biofilm-related infections and hospital dry surface biofilms.


Subject(s)
Disinfectants , Staphylococcal Infections , Humans , Staphylococcus aureus , Chlorine , Water , Proteomics , Anti-Bacterial Agents , Biofilms , Cell Wall
2.
Environ Dev Sustain ; : 1-30, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36345298

ABSTRACT

COVID-19 has had an impact on the entire humankind and has been proved to spread in deadly waves. As a result, preparedness and planning are required to better deal with the epidemic's upcoming waves. Effective planning, on the other hand, necessitates detailed vulnerability assessments at all levels, from the national to the state or regional. There are several issues at the regional level, and each region has its own features. As a result, each region needs its own COVID-19 vulnerability assessment. In terms of climate, terrain and demographics, the state of Uttarakhand differs significantly from the rest of India. As a result, a vulnerability assessment of the next COVID-19 variation (Omicron BA.2) is required for district-level planning to meet regional concerns. A total of 17 variables were chosen for this study, including demographic, socio-economic, infrastructure, epidemiological and tourism-related factors. AHP was used to compute their weights. After applying min-max normalisation to the data, a district-level quantitative SWOT is created to compare the performance of 13 Uttarakhand districts. A COVID-19 vulnerability index (normalised R i ) ranging between 0 and 1 was produced, and district-level vulnerabilities were mapped. Quantitative SWOT results depict that Dehradun is a best performing district followed by Haridwar, while Bageshwar, Rudra Prayag, Champawat and Pithoragarh are on the weaker side and the normalised Ri proves Dehradun, Nainital, Champawat, Bageshwar and Chamoli to be least vulnerable to COVID-19 (normalised R i ≤ 0.25) and Pithoragarh to be the most vulnerable district (normalised R i > 0.90). Pauri Garwal and Uttarkashi are moderately vulnerable (normalised R i 0.50 to 0.75).

3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293092

ABSTRACT

The Gram-positive bacterium Staphylococcus aureus is responsible for serious acute and chronic infections worldwide and is well-known for its biofilm formation ability. Recent findings of biofilms on dry hospital surfaces emphasise the failures in current cleaning practices and disinfection and the difficulty in removing these dry surface biofilms (DSBs). Many aspects of the formation of complex DSB biology on environmental surfaces in healthcare settings remains limited. In the present study, we aimed to determine how the protein component varied between DSBs and traditional hydrated biofilm. To do this, biofilms were grown in tryptic soy broth (TSB) on removable polycarbonate coupons in the CDC biofilm reactor over 12 days. Hydrated biofilm (50% TSB for 48 h, the media was then changed every 48 h with 20% TSB, at 37 °C with 130 rpm). DSB biofilm was produced in 5% TSB for 48 h at 35 °C followed by extended periods of dehydration (48, 66, 42 and 66 h at room temperature) interspersed with 6 h of 5% TSB at 35 °C. Then, we constructed a comprehensive reference map of 12-day DSB and 12-day hydrated biofilm associated proteins of S. aureus using a high-throughput tandem mass tag (TMT)-based mass spectrometry. Further pathway analysis of significantly differentially expressed identified proteins revealed that proteins significantly upregulated in 12-day DSB include PTS glucose transporter subunit IIBC (PtaA), UDP-N-acetylmuramate-L-alanine ligase (MurC) and UDP-N-acetylenolpyruvoylglucosamine (MurB) compared to 12-day hydrated biofilm. These three proteins are all linked with peptidoglycan biosynthesis pathway and are responsible for cell-wall formation and thicker EPS matrix deposition. Increased cell-wall formation may contribute to the persistence of DSB on dry surfaces. In contrast, proteins associated with energy metabolisms such as phosphoribosyl transferase (PyrR), glucosamine--fructose-6-phosphate aminotransferase (GlmS), galactose-6-phosphate isomerase (LacA), and argininosuccinate synthase (ArgG) were significantly upregulated whereas ribosomal and ABC transporters were significantly downregulated in the 12-day hydrated biofilm compared to DSB. However, validation by qPCR analysis showed that the levels of gene expression identified were only partially in line with our TMT-MS quantitation analysis. For the first time, a TMT-based proteomics study with DSB has shed novel insights and provided a basis for the identification and study of significant pathways vital for biofilm biology in this reference microorganism.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Proteomics , Argininosuccinate Synthase , DNA Breaks, Double-Stranded , Peptidoglycan , Biofilms , Glucosamine , Transferases , ATP-Binding Cassette Transporters , Glucose Transport Proteins, Facilitative , Transaminases , Alanine , Uridine Diphosphate
4.
Materials (Basel) ; 15(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629656

ABSTRACT

Topical antiseptics are often used to treat chronic wounds with biofilm infections and during salvage of biofilm contaminated implants, but their antibacterial efficacy is frequently only tested against non-aggregated planktonic or free-swimming organisms. This study evaluated the antibacterial and antibiofilm efficacy of four commercial surgical washes Bactisure, TorrenTX, minimally invasive lavage (MIS), and Betadine against six bacterial species: Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, which are commonly isolated from surgical site infections and chronic wound infections using different in vitro models. We determined minimum planktonic inhibitory and eradication concentration and minimum 1-day-old biofilm inhibition and eradication concentration of antiseptics in 96-well plates format with 24 h contact time. We also tested the efficacy of antiseptics at in-use concentration and contact time in the presence of biological soil against 3-day-old biofilm grown on coupons with shear in a bioreactor, such that the results are more applicable to the clinical biofilm situations. In the 96-well plate model, the minimum concentration required to inhibit or kill planktonic and biofilm bacteria was lower for Bactisure and TorrenTX than for MIS and Betadine. However, Betadine and Bactisure showed better antibiofilm efficacy than TorrenTX and MIS in the 3-day-old biofilm bioreactor model at in-use concentration. The minimal concentration of surgical washes required to inhibit or kill planktonic bacterial cells and biofilms varies, suggesting the need for the development and use of biofilm-based assays to assess antimicrobial therapies, such as topical antiseptics and their effective concentrations. The antibiofilm efficacy of surgical washes against different bacterial species also varies, highlighting the importance of testing against various bacterial species to achieve a thorough understanding of their efficacy.

5.
Waste Manag Res ; 40(9): 1356-1380, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35300557

ABSTRACT

The COVID-19 pandemic has a negative impact on the environment. Waste generation and improper management during the COVID-19 pandemic posed a major threat to human health and the environment. Irregular and improper waste collection, handling, suspension of waste recycling and unsanitary disposal were all important issues in the processing and management of generated waste. This study emphasised a systematic review and content analysis to categorise all types of waste management (WM) during the COVID-19 pandemic to accomplish a well understanding of the relation between the COVID-19 pandemic and its impacts on WM within the literature. In this systematic review, a number of published papers on different aspects of WM during March 2020 to February 2021 were considered in order to identify major challenges in handling WM during the pandemic time and highlight multi-strategic approaches suggested. A content analysis of the 58 relevant papers was carried out by incorporating different types of WM at local as well as global scales. The present review results revealed that the COVID-19 has impacted the quantity and composition of waste, and the crisis caused by the pandemic has also altered the nature of global WM system. A comprehensive analysis on how the systems of WM were affected through the advancement of COVID-19 and what would be the healthier solutions was also highlighted in this systematic review. The results of this systematic review would be beneficial for better policymakers to holistically address potential future pandemics, if any.


Subject(s)
COVID-19 , Waste Management , COVID-19/epidemiology , Humans , Pandemics , Recycling , Waste Management/methods
6.
Environ Sci Pollut Res Int ; 28(6): 7528-7550, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33034852

ABSTRACT

Sanitary landfill is still considered as one of the most significant and least expensive methods of waste disposal. It is essential to consider environmental impacts while selecting a suitable landfill site. Thus, the site selection for sanitary landfill is a complex and time-consuming task needing an assessment of multiple criteria. In the present study, a decision support system (DSS) was prepared for selecting a landfill site in a growing urban region. This study involved two steps of analysis. The first step of analysis involved the application of spatial data to prepare the thematic maps and derive their weight. The second step employed a fuzzy multicriteria decision-making (FMCDM) technique for prioritizing the identified landfill sites. Thus, initially, the analytic hierarchy process (AHP) was used for weighting the selected criteria, while the fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) was applied for addressing the uncertainty associated with decision-making and prioritizing the most suitable site. A case study was conducted in the city of Memari Municipality. The main goal of this study was the initial evaluation and acquisition of landfill candidate sites by utilizing GIS and the following decision criteria: (1) environmental criteria consisting of surface water, groundwater, land elevation, land use land cover, distance from urban residence and buildup, and distance from sensitive places; and (2) socioeconomic criteria including distance from the road, population density, and land value. For preparing the final suitability map, the integration of GIS layers and AHP was used. On output, 7 suitable landfill sites were identified which were further ranked using FTOPSIS based on expert's views. Finally, candidate site-7 and site-2 were selected as the most suitable for proposing new landfill sites in Memari Municipality. The results from this study showed that the integration of GIS with the MCDM technique can be highly applied for site suitability. The present study will be helpful to local planners and municipal authorities for proposing a planning protocol and suitable sites for sanitary landfill in the near future.


Subject(s)
Geographic Information Systems , Refuse Disposal , Cities , Decision Support Techniques , India , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...