Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Vitam Horm ; 125: 117-148, 2024.
Article in English | MEDLINE | ID: mdl-38997162

ABSTRACT

Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.


Subject(s)
Diabetic Nephropathies , Glycation End Products, Advanced , Insulin Resistance , Diabetic Nephropathies/metabolism , Humans , Glycation End Products, Advanced/metabolism , Insulin Resistance/physiology , Animals , Kidney/metabolism , Kidney/pathology , Signal Transduction , Oxidative Stress/physiology
2.
Lipids Health Dis ; 22(1): 49, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055787

ABSTRACT

The risk of alcoholic liver disease (ALD) is increased by excessive ethanol drinking. For the prevention of ALD, the effects of ethanol on the liver, adipose tissue, and gut are crucial. Interestingly, garlic and a few probiotic strains can protect against ethanol-induced hepatotoxicity. However, the relationship between adipose tissue inflammation, Kyolic aged garlic extract (AGE), and Lactobacillus rhamnosus MTCC1423 in developing ALD is unknown. Therefore, the present study explored the effect of synbiotics (a combination of prebiotics and probiotics) on adipose tissue to prevent ALD. To investigate the efficacy of synbiotics administration on adipose tissue in preventing ALD, in vitro (3T3-L1 cells, N = 3) groups: control, control + LPS (lipopolysaccharide), ethanol, ethanol + LPS, ethanol + synbiotics, ethanol + synbiotics + LPS; in vivo (Wistar male rats, N = 6) groups: control, ethanol, pairfed, ethanol + synbiotics and in silico experiments were conducted. Lactobacillus multiplies in accordance with the growth curve when exposed to AGE. Additionally, Oil red O staining and scanning electron microscopy (SEM) demonstrated that synbiotics therapy maintained the morphology of adipocytes in the alcoholic model. In support of the morphological changes, quantitative real-time PCR demonstrated overexpression of adiponectin and downregulation of leptin, resistin, PPARγ, CYP2E1, iNOS, IL-6, and TNF-α after administration of synbiotics compared to the ethanol group. In addition, MDA estimation by high-performance liquid chromatography (HPLC) indicated that the synbiotics treatment reduced oxidative stress in rat adipose tissue. Consequently, the in-silico analysis revealed that AGE inhibited the C-D-T networks as PPARγ acting as the main target protein. The current study demonstrates that using synbiotics improves adipose tissue metabolism in ALD.


Subject(s)
Liver Diseases, Alcoholic , Probiotics , Synbiotics , Rats , Male , Animals , Ethanol/toxicity , Lipid Metabolism , Lipopolysaccharides , PPAR gamma/genetics , Rats, Wistar , Liver Diseases, Alcoholic/prevention & control , Probiotics/pharmacology , Adipose Tissue
3.
Arch Physiol Biochem ; 129(1): 95-107, 2023 Feb.
Article in English | MEDLINE | ID: mdl-32730131

ABSTRACT

Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Insulin Resistance , Metabolic Syndrome , Humans , Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Reactive Oxygen Species/metabolism
4.
Biomedicines ; 10(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36552041

ABSTRACT

Alcoholic liver disease (ALD) alters gut microbiota and tight junctions, causing bacterial components to enter the portal vein and induce oxidative stress-induced inflammation in the liver. Only corticosteroids and liver transplants are treatment options for severe alcoholic hepatitis. ALD's pathophysiology is unknown. However, acetaldehyde's toxic effects cause oxidative stress and intestinal permeability. This study investigates the influence of a synbiotic (a combination of aged garlic extract (AGE) and Lactobacillus rhamnosus MTCC1423) on colonic oxidative stress and inflammation in ALD male Wistar rats and Caco2 cells. MDA measurement by HPLC in CaCo2 cells, blood serum, and colon tissue demonstrated that synbiotic treatment in the ALD model reduces oxidative stress. Further, fecal high-throughput 16S rRNA gene sequencing revealed the microbiome's shift towards Firmicutes in the synbiotic group compared to ethanol. In addition, DCFDA labeling and H/E staining demonstrate that the synbiotic is beneficial in inhibiting the development of ALD. In the colon, the synbiotic reduces the activation of CYP2E1 and the inflammatory markers TNF-a and IL-6 while elevating the mRNA expression of ZO-1, occludin, and IL-10. Synbiotics colonize Lactobacillus to restore barrier function and microbiota and reduce colon oxidative stress. Thus, a synbiotic combination can be used in ALD treatment.

5.
Arch Physiol Biochem ; : 1-19, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34657540

ABSTRACT

CONTEXT: The molecular mechanism by which Swertiamarin (SM) prevents advanced glycation end products (AGEs) induced diabetic nephropathy (DN) has never been explored. OBJECTIVE: To evaluate the effect of SM in preventing the progression of DN in high fat diet-streptozotocin-induced diabetic rats. MATERIALS AND METHODS: After 1 week of acclimatisation, the rats were divided randomly into five groups as follows: (1) Control group, which received normal chow diet; (2) High-fat diet (HFD) group which was fed diet comprising of 58.7% fat, 27.5% carbohydrate and 14.4% protein); (3) Aminoguanidine (AG) group which received HFD + 100 mg/k.b.w.AG (intraperitoneal); (4) Metformin (Met) group which received HFD + 70 mg/k.b.w. the oral dose of Met and (5) SM group which was supplemented orally with 50 mg/k.b.w.SM along with HFD. After 12 weeks all HFD fed animals were given a single 35 mg/k.b.w. dose of streptozotocin with continuous HFD feeding for additional 18 weeks. Later, various biochemical assays, urine analyses, histopathological analysis of kidneys, levels of AGEs, expression of various makers, and in-silico analysis were performed. RESULTS: The diabetic group demonstrated oxidative stress, increased levels of AGEs, decreased renal function, fibrosis in the renal tissue, higher expression of the receptor for advanced glycation end products (RAGE), which were ameliorated in the SM treated group. In-silico analysis suggests that SM can prevent the binding of AGEs with RAGE. CONCLUSIONS: SM ameliorated DN by inhibiting the oxidative stress induced by AGEs.HighlightsSM reduces the levels of hyperglycaemia-induced advanced glycation end products in serum and renal tissue.SM prevents renal fibrosis by inhibiting the EMT in the kidney tissue.The in-silico analysis proves that SM can inhibit the binding of various AGEs with RAGE, thereby inhibiting the AGE-RAGE axis.

6.
Mediators Inflamm ; 2021: 5245197, 2021.
Article in English | MEDLINE | ID: mdl-34616233

ABSTRACT

Ethanol depletes intestinal integrity and promotes gut dysbiosis. Studies have suggested the individual role of probiotics and metformin Met in protecting intestinal barrier function from injuries induced by ethanol. The objective of the current study is to investigate the potential mechanism by which coadministration of probiotic Visbiome® (V) and Met blocks the ethanol-induced intestinal barrier dysfunction/gut leakiness utilizing Caco-2 monolayers, a rat model with chronic ethanol injury, and in silico docking interaction models. In Caco-2 monolayers, exposure to ethanol significantly disrupted tight junction (TJ) localization, elevated monolayer permeability, and oxidative stress compared with controls. However, cotreatment with probiotic V and Met largely ameliorated the ethanol-induced mucosal barrier dysfunction, TJ disruption, and gut oxidative stress compared with ethanol-exposed monolayers and individual treatment of either agent. Rats fed with ethanol-containing Lieber-DeCarli liquid diet showed decreased expression of TJ proteins, and increased intestinal barrier injury resulting in pro-inflammatory response and oxidative stress in the colon. We found that co-administration of probiotic V and Met improved the expression of intestinal TJ proteins (ZO-1 and occludin) and upregulated the anti-inflammatory response, leading to reduced ER stress. Moreover, co-administration of probiotic V and Met inhibited the CYP2E1 and NOX gene expression, and increase the translocation of Nrf-2 as well as anti-oxidative genes (SOD, catalase, Gpx, and HO-1), leading to reduced colonic ROS content and malondialdehyde levels. The combined treatment of probiotic V and Met also improved their binding affinities towards HO-1, Nrf-2, SLC5A8, and GPR109A, which could be attributed to their synergistic effect. Our findings based on in-vitro, in-vivo, and in-silico analyses suggest that the combination of probiotic V and Met potentially acts in synergism, attributable to their property of inhibition of inflammation and oxidative stress against ethanol-induced intestinal barrier injury.


Subject(s)
Ethanol/toxicity , Intestinal Mucosa/drug effects , Metformin/pharmacology , Probiotics/pharmacology , Animals , Caco-2 Cells , Colon/drug effects , Colon/pathology , Cytochrome P-450 CYP2E1/analysis , Cytochrome P-450 CYP2E1/physiology , Humans , Intestinal Mucosa/metabolism , Lipid Metabolism/drug effects , Male , Molecular Docking Simulation , Monocarboxylic Acid Transporters/physiology , Oxidative Stress/drug effects , Rats , Rats, Wistar , Tight Junctions/drug effects
7.
Molecules ; 26(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067107

ABSTRACT

Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1ß. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.


Subject(s)
Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Iridoid Glucosides/pharmacology , Kidney/pathology , Oxidative Stress/drug effects , Protective Agents/pharmacology , Pyrones/pharmacology , Animals , Cattle , Cell Shape/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/metabolism , Fluorescence , Fructose , Glycation End Products, Advanced/metabolism , Glycosylation/drug effects , Inflammation/pathology , Iridoid Glucosides/chemistry , Iridoid Glucosides/isolation & purification , Ligands , Malondialdehyde/metabolism , Mass Spectrometry , Ornithine/analogs & derivatives , Ornithine/chemistry , Ornithine/pharmacology , Protein Carbonylation/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrones/chemistry , Pyrones/isolation & purification , Pyruvaldehyde , Rats , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/metabolism , Serum Albumin, Bovine/metabolism , Spectroscopy, Fourier Transform Infrared
8.
Mediators Inflamm ; 2021: 6636152, 2021.
Article in English | MEDLINE | ID: mdl-33953643

ABSTRACT

Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Ethanol/toxicity , Inflammation/drug therapy , Metformin/administration & dosage , Oxidative Stress/drug effects , Probiotics/administration & dosage , Animals , Endoplasmic Reticulum Stress/drug effects , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Macrophages/drug effects , Macrophages/physiology , Mice , NF-E2-Related Factor 2/biosynthesis , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
9.
Alcohol Clin Exp Res ; 41(6): 1078-1092, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28414868

ABSTRACT

BACKGROUND: Alcohol consumption is the fourth leading cause of death and disability worldwide. Several cellular pathways contribute to alcohol-mediated tissue injury. Adipose tissue apart from functioning as an endocrine organ secretes several hormones and cytokines known as adipokines that are known to play a significant role in alcohol-induced tissue damage. This study was designed to test the efficacy of diallyl sulfide (DAS) in regulating the alcohol-induced outcomes on adipose tissue. METHODS: Male Wistar rats were fed with 36% Lieber-DeCarli liquid diet containing ethanol (EtOH) for 4 weeks. Control rats were pair-fed with isocaloric diet containing maltodextrin instead of EtOH. During the last week of feeding protocol, the EtOH-fed rat group was given 200 mg/kg body weight of DAS through diet. We also studied DAS effect on isolated human primary adipocytes. Viability of human primary adipocytes on DAS treatment was assessed by MTT assay. Malondialdehyde (MDA), a marker of oxidative stress, was measured by HPLC and the thiobarbituric acid method. Expression of inflammatory genes and lipogenic genes was studied by qRT-PCR and Western blotting. Serum inflammatory gene expression was studied by ELISA. RESULTS: Our study results showed that DAS could alleviate EtOH-induced expression levels of proinflammatory and endoplasmic reticulum (ER) stress genes and improve adipose tissue mass and adipocyte morphology in male Wistar rats fed Lieber-DeCarli diet containing 6% EtOH. Further, we showed that DAS reduced the expression of lipogenic genes and improved lipid accumulation and adipocyte mass in human primary adipocytes treated with EtOH. Subsequently, we also showed that oxidative stress, as measured by the changes in MDA levels, was reduced in both male Wistar rats and human primary adipocytes treated with EtOH plus DAS. CONCLUSIONS: Our study results prove that DAS is effective in ameliorating EtOH-induced damage to adipose tissue as evidenced by the reduction brought about by DAS in oxidative stress, ER stress, and proinflammatory gene expression levels. DAS treatment also regulated lipogenic gene expression levels, thereby reducing free fatty acid release. In conclusion, this study has clinical implications with respect to alcohol-induced adipose tissue injury among alcohol users.


Subject(s)
Adipose Tissue/drug effects , Allyl Compounds/pharmacology , Antioxidants/pharmacology , Ethanol/toxicity , Oxidative Stress/drug effects , Sulfides/pharmacology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Humans , Male , Oxidative Stress/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...