Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5236, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897990

ABSTRACT

Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest. Slot-shaped nanopores in the membrane act as plasmonic antennas and enhance the Raman response of the surface or thin film underneath. Simultaneously, the PAuM suppresses the penetration of the excitation laser into the bulk, efficiently blocking its Raman signal. Using graphene as a model surface, we show that this method increases the surface-to-bulk Raman signal ratio by three orders of magnitude. We find that 90% of the Raman enhancement occurs within the top 2.5 nm of the material, demonstrating truly surface-sensitive Raman scattering. To validate our approach, we quantify the strain in a 12.5 nm thin Silicon film and analyze the surface of a LaNiO3 thin film. We observe a Raman mode splitting for the LaNiO3 surface-layer, which is spectroscopic evidence that the surface structure differs from the bulk. These results validate that PAuM gives direct access to Raman signatures of thin films and surfaces.

2.
ACS Appl Mater Interfaces ; 14(14): 16558-16567, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35353489

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) demands reliable, high-enhancement substrates in order to be used in different fields of application. Here we introduce freestanding porous gold membranes (PAuM) as easy-to-produce, scalable, mechanically stable, and effective SERS substrates. We fabricate large-scale sub-30 nm thick PAuM that form freestanding membranes with varying morphologies depending on the nominal gold thickness. These PAuM are mechanically stable for pressures up to more than 3 bar and exhibit surface-enhanced Raman scattering with local enhancement factors from 104 to 105, which we demonstrate by wavelength-dependent and spatially resolved Raman measurements using graphene as a local Raman probe. Numerical simulations reveal that the enhancement arises from individual, nanoscale pores in the membrane acting as optical slot antennas. Our PAuM are mechanically stable, provide robust SERS enhancement for excitation power densities up to 106 W cm-2, and may find use as a building block in SERS-based sensing applications.

3.
Nano Lett ; 21(19): 8332-8339, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34607425

ABSTRACT

Single-layer graphene has many remarkable properties but does not lend itself as a material for light-emitting devices as a result of its lack of a band gap. This limitation can be overcome by a controlled stacking of graphene layers. Exploiting the unique Dirac cone band structure of graphene, we demonstrate twist-controlled resonant light emission from graphene/hexagonal boron nitride (h-BN)/graphene tunnel junctions. We observe light emission irrespective of the crystallographic alignment between the graphene electrodes. Nearly aligned devices exhibit pronounced resonant features in both optical and electrical characteristics that vanish rapidly for twist angles θ ≳3°. These experimental findings can be well-explained by a theoretical model in which the spectral photon emission peak is attributed to photon-assisted momentum conserving electron tunneling. The resonant peak in our aligned devices can be spectrally tuned within the near-infrared range by over 0.2 eV, making graphene/h-BN/graphene tunnel junctions potential candidates for on-chip optoelectronics.

4.
Rep Prog Phys ; 82(11): 112401, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31491785

ABSTRACT

Analogous to radio- and microwave antennas, optical nanoantennas are devices that receive and emit radiation at optical frequencies. Until recently, the realization of electrically driven optical antennas was an outstanding challenge in nanophotonics. In this review we discuss and analyze recent reports in which quantum tunneling-specifically inelastic electron tunneling-is harnessed as a means to convert electrical energy into photons, mediated by optical antennas. To aid this analysis we introduce the fundamentals of optical antennas and inelastic electron tunneling. Our discussion is focused on recent progress in the field and on future directions and opportunities.

5.
Nano Lett ; 19(10): 6914-6923, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31513426

ABSTRACT

Integration of electrical contacts into van der Waals (vdW) heterostructures is critical for realizing electronic and optoelectronic functionalities. However, to date no scalable methodology for gaining electrical access to buried monolayer two-dimensional (2D) semiconductors exists. Here we report viable edge contact formation to hexagonal boron nitride (hBN) encapsulated monolayer MoS2. By combining reactive ion etching, in situ Ar+ sputtering and annealing, we achieve a relatively low edge contact resistance, high mobility (up to ∼30 cm2 V-1 s-1) and high on-current density (>50 µA/µm at VDS = 3V), comparable to top contacts. Furthermore, the atomically smooth hBN environment also preserves the intrinsic MoS2 channel quality during fabrication, leading to a steep subthreshold swing of 116 mV/dec with a negligible hysteresis. Hence, edge contacts are highly promising for large-scale practical implementation of encapsulated heterostructure devices, especially those involving air sensitive materials, and can be arbitrarily narrow, which opens the door to further shrinkage of 2D device footprint.

6.
Nano Lett ; 19(9): 6097-6103, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31424948

ABSTRACT

Transition metal dichalcogenides (TMDCs) exhibit high second harmonic (SH) generation in the visible due to their noncentrosymmetric crystal structure in odd-layered form and direct bandgap transition when thinned down to a monolayer. In order to emit the SH radiation into a desired direction, one requires a means to control the phase of the in-plane nonlinear polarization. Here, we couple the SH response of a monolayer MoS2 to an optical phased array antenna and demonstrate controllable steering of the nonlinear emission. By exploiting the intrinsic SH generation by the phased array antenna we achieve uniform emission efficiency into a broad angular range. Our work has relevance for novel optoelectronic applications, such as programmable optical interconnects and on-chip LIDAR.

7.
Nano Lett ; 19(6): 3641-3647, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31079463

ABSTRACT

In ultrathin two-dimensional (2-D) materials, the formation of ohmic contacts with top metallic layers is a challenging task that involves different processes than in bulk-like structures. Besides the Schottky barrier height, the transfer length of electrons between metals and 2-D monolayers is a highly relevant parameter. For MoS2, both short (≤30 nm) and long (≥0.5 µm) values have been reported, corresponding to either an abrupt carrier injection at the contact edge or a more gradual transfer of electrons over a large contact area. Here we use ab initio quantum transport simulations to demonstrate that the presence of an oxide layer between a metallic contact and a MoS2 monolayer, for example, TiO2 in the case of titanium electrodes, favors an area-dependent process with a long transfer length, while a perfectly clean metal-semiconductor interface would lead to an edge process. These findings reconcile several theories that have been postulated about the physics of metal/MoS2 interfaces and provide a framework to design future devices with lower contact resistances.

8.
Nat Commun ; 10(1): 292, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655527

ABSTRACT

The understanding of and control over light emission from quantum tunneling has challenged researchers for more than four decades due to the intricate interplay of electrical and optical properties in atomic scale volumes. Here we introduce a device architecture that allows for the disentanglement of electronic and photonic pathways-van der Waals quantum tunneling devices. The electronic properties are defined by a stack of two-dimensional atomic crystals whereas the optical properties are controlled via an external photonic architecture. In van der Waals heterostructures made of gold, hexagonal boron nitride and graphene we find that inelastic tunneling results in the emission of photons and surface plasmon polaritons. By coupling these heterostructures to optical nanocube antennas we achieve resonant enhancement of the photon emission rate in narrow frequency bands by four orders of magnitude. Our results lead the way towards a new generation of nanophotonic devices that are driven by quantum tunneling.

9.
Nanotechnology ; 29(26): 265203, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29644983

ABSTRACT

Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

SELECTION OF CITATIONS
SEARCH DETAIL
...