Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267122

ABSTRACT

BackgroundAs evidence shows that vaccine immunity to COVID-19 wanes with time and decreases due to variants, several countries are implementing booster vaccination campaigns. The objective of this study was to analyze the morbidity and mortality burdens of different primary and booster vaccination strategies against COVID-19, using France as a case study. MethodsWe used a deterministic, age-structured, compartmental model fitted to hospital admission data and validated against sero-prevalence data in France to analyze the impact of primary and booster vaccination strategies on morbidity and mortality assuming waning of immunity and increased virus transmissibility during winter. FindingsStrategies prioritizing primary vaccinations were systematically more effective than strategies prioritizing boosters. Regarding booster strategies targeting different age groups, their effectiveness varied with the levels of virus transmissibility, and according to the assumed loss of immunity for each age group. If the immunity reduction affects all age groups, people aged 30 to 49 years should be boosted in priority, even for low transmissibility levels. If the immunity reduction is restricted to people older than 65 years, boosting younger people becomes effective only above certain levels of transmissibility. InterpretationIncreasing the primary vaccination coverage should remain a priority to reduce morbidity and mortality due to COVID-19. If a plateau of primary vaccination has been reached, boosting immunity in younger age-groups could prevent more hospitalizations and deaths than boosting the immunity of older people, especially under conditions increasing SARS-CoV-2 transmissibility, or when facing new variants. FundingThe study was partially funded by the French national research agency through project SPHINX-17-CE36-0008-0. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSMany countries have started booster vaccination programs against Covid-19, while others are still struggling to vaccinate their population. However, evidence is scarce regarding the optimal vaccination strategy to pursue in a rapidly evolving epidemiological context. A search of the literature on Nov 27 2021, using the terms (booster OR third dose) AND vaccine AND strategy AND (COVID* OR SARS*) AND (effect OR impact), returned 45 studies on PubMed and 1602 on medRxiv. However, very few studies assessed the public health impact of a booster strategy, and none of them compared different allocations strategies between primary and booster vaccinations, or investigated which age-group should be targeted for booster vaccination to maximize the public health impact of the strategy. Added value of this studyUsing an epidemiological model able to replicate the dynamic of the SARS-CoV-2 epidemic and able to account for the use of multiple vaccines and booster, we analyzed the effectiveness of different vaccination strategies, either based on prioritization of primary vaccination versus booster, or based on the age-group targeted for the booster vaccination. We evaluated the strategies in terms of hospitalizations and deaths avoided, in various epidemic scenarios during winter 2021-2022. To our knowledge, this is the first modeling study evaluating such strategies. We found that increasing primary vaccination of all adults is always more beneficial than giving a booster dose to elderly individuals, and that the age-group to target for a booster dose for optimal effectiveness depends on the level of transmission of the virus. As the level of SARS-CoV-2 transmission increases, boosting immunity in younger age-groups becomes the most effective strategy to decrease hospitalizations and deaths in the general population. Implications of all available evidenceCountries that have not reached the plateau of primary vaccination should focus their effort towards extending the overall primary vaccination coverage rather than boosting the immunity of fully vaccinated people, even for elderly individuals that may be facing waning immunity. When considering booster vaccination, the choice of which age groups to target should consider the level of virus transmissibility in the population. Considering the emergence of new, more transmissible SARS-CoV-2 variants, increasing the worldwide vaccination coverage should remain a priority.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257088

ABSTRACT

After one year of stop-and-go COVID-19 mitigation, some European countries still experience sustained viral circulation due to the B.1.1.7 variant. As the prospect of phasing out this stage through vaccination draws closer, it is critical to balance the efficacy of long-lasting interventions and their impact on the quality of life. Focusing on the current situation in France, we show that moderate interventions require a much longer time to achieve the same result as high intensity lockdowns, with the additional risk of deteriorating control as adherence wanes. Integrating intensity and duration of social distancing in a data-driven "distress" index, we show that shorter strict lockdowns are largely more performant than longer moderate lockdowns, for similar intermediate distress and infringement on individual freedom. Our study shows that favoring milder interventions over more stringent short approaches on the basis of perceived acceptability could be detrimental in the long term, especially with waning adherence.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255876

ABSTRACT

Several countries have implemented lockdowns to control their COVID-19 epidemic. However, questions like "where" and "when" still require answers. We assessed the impact of national and regional lockdowns considering the French first epidemic wave of COVID-19 as a case study. In a regional lockdown scenario aimed at preventing intensive care units (ICU) saturation, almost all French regions would have had to implement a lockdown within 10 days and 96% of ICU capacities would have been used. For slowly growing epidemics, with a lower reproduction number, the expected delays between regional lockdowns increases. However, the public health costs associated with these delays tend to grow exponentially with time. In a quickly growing pandemic wave, defining the timing of lockdowns at a regional rather than national level delays by a few days the implementation of a nationwide lockdown but leads to substantially higher morbidity, mortality and stress on the healthcare system.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20075705

ABSTRACT

1On March 16 2020, French authorities ordered a large scale lockdown to counter the COVID-19 epidemic wave rising in the country, stopping non-essential economic, educational, and entertainment activities, maintaining mainly food retailers and healthcare institutions. One month later, the number of new hospitalizations and ICU admissions had reached a plateau and were beginning a slow descent. We developed a spatialized, deterministic, age-structured, and compartmental SARS-CoV-2 transmission model able to reproduce the pre-lockdown dynamic of the epidemic in each of the 13 French metropolitan regions. Thanks to this model, we estimate, at regional and national levels, the total number of hospitalizations, ICU admissions, hospital beds requirements (hospitalization and ICU), and hospital deaths which may have been prevented by this massive and unprecedented intervention in France. If no control measures had been set up, between March 19 and April 19 2020, our analysis shows that almost 23% of the French population would have been affected by COVID-19 (14.8 million individuals). Hence, the French lockdown prevented 587,730 hospitalizations and 140,320 ICU admissions at the national level. The total number of ICU beds required to treat patients in critical conditions would have been 104,550, far higher than the maximum French ICU capacity. This first month of lockdown also permitted to avoid 61,739 hospital deaths, corresponding to a 83.5% reduction of the total number of predicted deaths. Our analysis shows that in absence of any control measures, the COVID-19 epidemic would have had a critical morbidity and mortality burden in France, overwhelming in a matter of weeks French hospital capacities.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20072462

ABSTRACT

To date, no specific estimate of R0 for SARS-CoV-2 is available for healthcare settings. Using inter-individual contact data, we highlight that R0 estimates from the community cannot translate directly to healthcare settings, with pre-pandemic R0 values ranging 1.3-7.7 in three illustrative healthcare institutions. This has implications for nosocomial Covid-19 control.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20036939

ABSTRACT

1Europe is now considered as the epicenter of the SARS-CoV-2 pandemic, France being among the most impacted country. In France, there is an increasing concern regarding the capacity of the healthcare system to sustain the outbreak, especially regarding intensive care units (ICU). The aim of this study was to estimate the dynamics of the epidemic in France, and to assess its impact on healthcare resources for each French metropolitan Region. We developed a deterministic, age-structured, Susceptible-Exposed-Infectious-Removed (SEIR) model based on catchment areas of each COVID-19 referral hospitals. We performed one month ahead predictions (up to April 14, 2020) for three different scenarios (R0 = 1.5, R0 = 2.25, R0 = 3), where we estimated the daily number of COVID-19 cases, hospitalizations and deaths, the needs in ICU beds per Region and the reaching date of ICU capacity limits. At the national level, the total number of infected cases is expected to range from 22,872 in the best case (R0 = 1.5) to 161,832 in the worst case (R0 = 3), while the total number of deaths would vary from 1,021 to 11,032, respectively. At the regional level, all ICU capacities may be overrun in the worst scenario. Only seven Regions may lack ICU beds in the mild scenario (R0 = 2.25) and only one in the best case. In the three scenarios, Corse may be the first Region to see its ICU capacities overrun. The two other Regions, whose capacity will be overrun shortly after are Grand-Est and Bourgogne-Franche-Comte. Our analysis shows that, even in the best case scenario, the French healthcare system will very soon be overwhelmed. While drastic social distancing measures may temper our results, a massive reorganization leading to an expansion of French ICU capacities seems to be necessary to manage the coming wave of critically affected COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...