Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 1765, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741970

ABSTRACT

The discovery of superconductivity above 250 K at high pressure in LaH10 and the prediction of overcoming the room temperature threshold for superconductivity in YH10 urge for a better understanding of hydrogen interaction mechanisms with the heavy atom sublattice in metal hydrides under high pressure at the atomic scale. Here we use locally sensitive X-ray absorption fine structure spectroscopy (XAFS) to get insight into the nature of phase transitions and the rearrangements of local electronic and crystal structure in archetypal metal hydride YH3 under pressure up to 180 GPa. The combination of the experimental methods allowed us to implement a multiscale length study of YH3: XAFS (short-range), Raman scattering (medium-range) and XRD (long-range). XANES data evidence a strong effect of hydrogen on the density of 4d yttrium states that increases with pressure and EXAFS data evidence a strong anharmonicity, manifested as yttrium atom vibrations in a double-well potential.

2.
Sci Rep ; 9(1): 8940, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31222067

ABSTRACT

The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was characterized by an accurate determination of the pressure-volume equation of state, with a bulk modulus of 339(3) GPa and its derivative of 5.3(1). X-ray absorption spectroscopy, which probes the local structure and the empty density of electronic states above the Fermi level, was also utilized. The remarkable agreement observed between experimental and calculated spectra validates the reliability of theoretical predictions of the pressure dependence of the electronic structure of iridium in the studied interval of compressions.

3.
Phys Rev Lett ; 122(12): 127204, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30978088

ABSTRACT

X-ray magnetic circular dichroism (XMCD) studies at the Er L_{2,3} edges of Er_{3}Fe_{5}O_{12} exhibit a change of the spectral shape as a function of temperature and magnetic field. Using singular value decomposition, this variation is understood as a linear combination of two components. The dominating component is associated with the Er magnetization, while the second contribution is identified as an induced signal from the Fe sites. XMCD at either of the L edges in Er_{3}Fe_{5}O_{12} provides information on the net magnetization of both sublattices. Their evolution in fields up to 30 T reveals details of the ferrimagnetic interactions on two very different scales.

4.
Geophys Res Lett ; 46(3): 1348-1356, 2019 Feb 16.
Article in English | MEDLINE | ID: mdl-31007309

ABSTRACT

Recent experiments have demonstrated the existence of previously unknown iron oxides at high pressure and temperature including newly discovered pyrite-type FeO2 and FeO2Hx phases stable at deep terrestrial lower mantle pressures and temperatures. In the present study, we probed the iron oxidation state in high-pressure transformation products of Fe3+OOH goethite by in situ X-ray absorption spectroscopy in laser-heated diamond-anvil cell. At pressures and temperatures of ~91 GPa and 1,500-2,350 K, respectively, that is, in the previously reported stability field of FeO2Hx, a measured shift of -3.3 ± 0.1 eV of the Fe K-edge demonstrates that iron has turned from Fe3+ to Fe2+. We interpret this reductive valence change of iron by a concomitant oxidation of oxygen atoms from O2- to O-, in agreement with previous suggestions based on the structures of pyrite-type FeO2 and FeO2Hx phases. Such peculiar chemistry could drastically change our view of crystal chemistry in deep planetary interiors.

5.
J Synchrotron Radiat ; 25(Pt 6): 1745-1752, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30407185

ABSTRACT

The combination of complementary techniques in the characterization of catalysts under working conditions is a very powerful tool for an accurate and in-depth comprehension of the system investigated. In particular, X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectroscopy (MS) is a powerful combination since XAS characterizes the main elements of the catalytic system (selecting the absorption edge) and DRIFTS monitors surface adsorbates while MS enables product identification and quantification. In the present manuscript, a new reactor cell and an experimental setup optimized to perform time-resolved experiments on heterogeneous catalysts under working conditions are reported. A key feature of this setup is the possibility to work at high temperature and pressure, with a small cell dead volume. To demonstrate these capabilities, performance tests with and without X-rays are performed. The effective temperature at the sample surface, the speed to purge the gas volume inside the cell and catalytic activity have been evaluated to demonstrate the reliability and usefulness of the cell. The setup capability of combining XAS, DRIFTS and MS spectroscopies is demonstrated in a time-resolved experiment, following the reduction of NO by Rh nanoparticles supported on alumina.

6.
J Phys Condens Matter ; 30(24): 245402, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29714173

ABSTRACT

Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases-zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)-are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd-Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.

7.
Rev Sci Instrum ; 89(1): 013111, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29390671

ABSTRACT

A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting.

8.
J Phys Condens Matter ; 28(4): 045401, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26742465

ABSTRACT

Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at ∼14.5 GPa.

9.
J Synchrotron Radiat ; 23(1): 353-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26698085

ABSTRACT

The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy--TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 10(14) photons s(-1) on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth's interior and in laser-shocked matter are given.

10.
J Synchrotron Radiat ; 22(6): 1548-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524321

ABSTRACT

BM23 is the general-purpose EXAFS bending-magnet beamline at the ESRF, replacing the former BM29 beamline in the framework of the ESRF upgrade. Its mission is to serve the whole XAS user community by providing access to a basic service in addition to the many specialized instruments available at the ESRF. BM23 offers high signal-to-noise ratio EXAFS in a large energy range (5-75 keV), continuous energy scanning for quick-EXAFS on the second timescale and a micro-XAS station delivering a spot size of 4 µm × 4 µm FWHM. It is a user-friendly facility featuring a high degree of automation, online EXAFS data reduction and a flexible sample environment.

11.
J Chem Phys ; 142(21): 214503, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049504

ABSTRACT

We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 µm(2), spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3-1.5 interval.

12.
J Phys Condens Matter ; 26(45): 452201, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25320052

ABSTRACT

We report on Raman and Ni K-edge x-ray absorption investigations of a NiS(2-x)Se(x) (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS(2-x)Se(x) Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS(2-x)Se(x) pyrites.

13.
J Chem Phys ; 140(22): 224504, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24929404

ABSTRACT

The local vibrational dynamics of hematite (α-Fe2O3) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe-O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe-O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe-O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe-O bond is stiffer to stretching and softer to bending than the long Fe-O bond.

14.
Dalton Trans ; 43(25): 9647-54, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24831960

ABSTRACT

The high pressure behavior of TaON was studied using a combination of Raman scattering, synchrotron X-ray diffraction, and X-ray absorption spectroscopy in diamond anvil cells to 70 GPa at ambient temperature. A Birch-Murnaghan equation of state fit for baddeleyite structured ß-TaON indicates a high bulk modulus value Ko = 328 ± 4 GPa with K = 4.3. EXAFS analysis of the high pressure XAS data provides additional information on changes in the Ta-(O,N) and Ta-Ta distances. Changes in the X-ray diffraction patterns and Raman spectra indicate onset of a pressure induced phase transition near 33 GPa. Our analysis indicates that the new phase has an orthorhombic cotunnite-type structure but that the phase transition may not be complete even by 70 GPa. Similar sluggish transformation kinetics are observed for the isostructural ZrO2 phase. Analysis of compressibility data for the new cotunnite-type TaON phase indicate a very high bulk modulus Ko ∼ 370 GPa, close to the theoretically predicted value.

15.
J Phys Condens Matter ; 25(42): 425704, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24084478

ABSTRACT

The local structure and the electronic properties of FeSe under hydrostatic pressure were studied by means of dispersive x-ray absorption measurements at the Fe K-edge. The pressure dependence of the x-ray absorption near edge structure features seems to follow the behavior of the superconducting transition temperature Tc. The local structure, that has an important impact on the superconducting properties, appears to fall into two regimes: the pressure dependence of the Fe-Fe bond distance shows a clear change in the compressibility at p ∼ 5 GPa; in contrast, the Fe-Se bond distance decreases continuously with increasing pressure with a lower compressibility than the Fe-Fe bond. The results suggest that the pressure dependent changes in Tc of FeSe are closely related to the changes in local structure.

16.
J Synchrotron Radiat ; 20(Pt 4): 603-13, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23765303

ABSTRACT

The evaluation of uncertainty in temperature-dependent EXAFS measurements is discussed, considering the specific case of a recent experiment performed on CdTe. EXAFS at both Cd and Te K-edges was measured at different times and at different beamlines in a temperature range from 5 to 300 K. Attention is focused on the nearest-neighbours parameters: bond thermal expansion, parallel and perpendicular mean-square relative displacements and the third cumulant. Different causes of uncertainty, a comparison of experimental results with theoretical models, the difference between EXAFS and crystallographic thermal expansions and the meaning of the third cumulant are discussed.

17.
Acta Crystallogr A ; 69(Pt 1): 91-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23250065

ABSTRACT

The focusing properties of cylindrically bent crystals in symmetric Laue geometry are discussed using the formalism of Fresnel diffraction and the analytical solution of the Takagi-Taupin equations for a point source on the entrance surface. The existence of a focal shift in the dynamical focusing effect is pointed out and discussed. The present theoretical framework is applied to experiments performed at the energy-dispersive X-ray absorption spectroscopy beamline of the European Synchrotron Radiation Facility concerning the position and the size of the focal spot obtained from a polychromatic source at a large distance from the bent crystal.

18.
Phys Rev Lett ; 107(23): 237202, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182121

ABSTRACT

The structural stability of fcc Ni over a very large pressure range offers a unique opportunity to experimentally investigate how magnetism is modified by simple compression. K-edge x-ray magnetic circular dichroism (XMCD) shows that fcc Ni is ferromagnetic up to 200 GPa, contradicting recent predictions of an abrupt transition to a paramagnetic state at 160 GPa. Density functional theory calculations point out that the pressure evolution of the K-edge XMCD closely follows that of the p projected orbital moment rather than that of the total spin moment. The disappearance of magnetism in Ni is predicted to occur above 400 GPa.

19.
J Chem Phys ; 131(22): 224502, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001052

ABSTRACT

We report an in situ high pressure investigation of the structural change in vitreous As(2)S(3) up to 60 GPa using the diamond anvil cell and energy dispersive x-ray absorption spectroscopy. The main finding of the present study is a gradual elongation of the average As-S bond length, which takes place in the pressure range of 15-50 GPa. This change is interpreted as a signature of the coordination number increase around As atoms. The negative shift of the As K absorption edge position confirms the progressive metallization of the glass at high pressure. The observed changes are reversible after pressure release.

20.
J Synchrotron Radiat ; 16(Pt 6): 737-41, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19844007

ABSTRACT

The diamond anvil cell (DAC) technique coupled with laser heating has become the most successful method for studying materials in the multimegabar pressure range at high temperatures. However, so far all DAC laser-heating systems have been stationary: they are linked either to certain equipment or to a beamline. Here, a portable laser-heating system for DACs has been developed which can be moved between various analytical facilities, including transfer from in-house to a synchrotron or between synchrotron beamlines. Application of the system is demonstrated in an example of nuclear inelastic scattering measurements of ferropericlase (Mg(0.88)Fe(0.12))O and h.c.p.-Fe(0.9)Ni(0.1) alloy, and X-ray absorption near-edge spectroscopy of (Mg(0.85)Fe(0.15))SiO(3) majorite at high pressures and temperatures. Our results indicate that sound velocities of h.c.p.-Fe(0.9)Ni(0.1) at pressures up to 50 GPa and high temperatures do not follow a linear relation with density.

SELECTION OF CITATIONS
SEARCH DETAIL
...