Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 57(3): 496-508, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12703939

ABSTRACT

Habitat degradation and loss can result in population decline and genetic erosion, limiting the ability of organisms to cope with environmental change, whether this is through evolutionary genetic response (requiring genetic variation) or through phenotypic plasticity (i.e., the ability of a given genotype to express a variable phenotype across environments). Here we address the question whether plants from small populations are less plastic or more susceptible to environmental stress than plants from large populations. We collected seed families from small (<100) versus large natural populations (>1,000 flowering plants) of the rare, endemic plant Cochlearia bavarica (Brassicaceae). We exposed the seedlings to a range of environments, created by manipulating water supply and light intensity in a 2 x 2 factorial design in the greenhouse. We monitored plant growth and survival for 300 days. Significant effects of offspring environment on offspring characters demonstrated that there is phenotypic plasticity in the responses to environmental stress in this species. Significant effects of population size group, but mainly of population identity within the population size groups, and of maternal plant identity within populations indicated variation due to genetic (plus potentially maternal) variation for offspring traits. The environment x maternal plant identity interaction was rarely significant, providing little evidence for genetically- (plus potentially maternally-) based variation in plasticity within populations. However, significant environment x population-size-group and environment x population-identity interactions suggested that populations differed in the amount of plasticity, the mean amount being smaller in small populations than in large populations. Whereas on day 210 the differences between small and large populations were largest in the environment in which plants grew biggest (i.e., under benign conditions), on day 270 the difference was largest in stressful environments. These results show that population size and population identity can affect growth and survival differently across environmental stress gradients. Moreover, these effects can themselves be modified by time-dependent variation in the interaction between plants and their environment.


Subject(s)
Biological Evolution , Brassicaceae/genetics , Environment , Brassicaceae/classification , Brassicaceae/growth & development , Climate , Germany , Population Density , Seasons
2.
Am J Bot ; 89(8): 1250-9, 2002 Aug.
Article in English | MEDLINE | ID: mdl-21665726

ABSTRACT

In small, fragmented populations of self-incompatible plant species, genetic drift and increasingly close relationships between plants may restrict the number of genetically different pollen donors, the availability of compatible mates, and the opportunity for pollen competition and selection. These restrictions may reduce the siring success or increase the probability of inbreeding depression in the offspring. To test if this was the case, we hand-pollinated maternal plants in small and large populations of the rare, endemic plant Cochlearia bavarica (Brassicaceae) with pollen from one, three, or nine donors from the same population or with nine donors from a different population. In one additional population of intermediate size, maternal plants were hand-pollinated with ten donors located at a distance of 1, 10, 100, or 1000 m. We then recorded seed and offspring characters. On average, offspring from small populations were smaller than normal and fewer survived to maturity. Increasing the number of pollen donors had a positive effect on reproductive success in small and large populations, but at the highest pollen diversity this occurred at the expense of slightly reduced offspring fitness. Because the total amount of transferred pollen was held constant, these effects could not be attributed to increasing pollen load. Rather, the increasing pollen diversity may have increased the chances of selecting a particularly "good" donor for fertilization-an example of a sampling effect of diversity. Pollen from outside a population or from 10-100 m away resulted in higher reproductive success and greater offspring size. Effects of population size and pollination treatments on reproductive success and offspring fitness were additive. Apparently, there is no obvious size threshold above which the potential of inbreeding depression can be ignored in C. bavarica.

SELECTION OF CITATIONS
SEARCH DETAIL
...