Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(19): 4759-4769, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38608137

ABSTRACT

The inherently high viscosity of ionic liquids (ILs) can limit their potential applications. One approach to address this drawback is to modify the cation side chain with ether groups. Herein, we assessed the structure-property relationship by focusing on acetate (OAc), a strongly coordinating anion, with 1,3-dialkylimidazolium cations with different side chains, including alkyl, ether, and hydroxyl functionalized, as well as their combinations. We evaluated their viscosity, thermal stabilities, and microstructure using Raman and infrared (IR) spectroscopies, allied to density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The viscosity data showed that the ether insertion significantly enhances the fluidity of the ILs, consistent with the coiling effect of the cation chain. Through a combined experimental and theoretical approach, we analyzed how the OAc anion interacts with ether ILs, revealing a characteristic bidentate coordination, particularly in hydroxyl functionalized ILs due to specific hydrogen bonding with the OH group. IR spectroscopy showed subtle shifts in the acidic hydrogens of imidazolium ring C(2)-H and C(4,5)-H, suggesting weaker interactions between OAc and the imidazolium ring in ether-functionalized ILs. Additionally, spatial distribution functions (SDF) and dihedral angle distribution obtained via AIMD confirmed the intramolecular hydrogen bonding due to the coiling effect of the ether side chain.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38445739

ABSTRACT

Choline dihydrogen phosphate, [Chol][H2PO4], is a proton-conducting ionic plastic crystal exhibiting a complicated sequence of phase transitions. Here, we address the argument in the literature around the thermal properties of [Chol][H2PO4] using Raman and infrared microspectroscopy. The known structure of the low-temperature crystal, which contains the anti-conformer of [Chol]+ and hydrogen-bonded dimers of anions, was used to do periodic density functional theory calculations of the vibrational frequencies. Raman spectra indicate that the solid-solid transition at 20 °C is linked to a conformational change to the gauche [Chol] conformer with a concurrent local rearrangement of the anions. The distinct bands of lattice modes in the low-frequency range of the Raman spectra vanish at the 20 °C transition. Given the ease with which metastable crystals can be produced, Raman mappings demonstrate that a sample of [Chol][H2PO4] at ambient temperature can contain a combination of anti- and gauche conformers. Heating to 120 °C causes continuous changes in the local environment of anions rather than melting as suggested by a recent calorimetric investigation of [Chol][H2PO4]. The monotonic change in vibrational spectra is consistent with earlier observations of a very small entropy of fusion and no abrupt jump in the temperature dependence of ionic conductivity along the phase transitions of [Chol][H2PO4].

3.
Phys Chem Chem Phys ; 22(16): 9074-9085, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32297886

ABSTRACT

The intermolecular dynamics in the THz frequency range of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by a combined usage of inelastic neutron scattering (INS), Raman, and far-infrared (FIR) spectroscopies and the power spectrum calculated by molecular dynamics (MD) simulations. The collective dynamics of the simulated systems is also discussed by the calculation of time correlation functions of charge and mass currents that are projected onto acoustic- and optic-like motions. The INS and Raman measurements have been performed as a function of temperature in the glassy, crystalline, and liquid phases. The excess in the vibrational density of states over the expectation of the Debye theory, the so-called boson peak, is found in the INS and Raman spectra as a peak at ∼2 meV (∼16 cm-1) and also in the direct measurement of heat capacity at very low temperatures (4-20 K). This low-frequency vibration is incorporated into the curve fits of Raman, FIR, and MD data at room temperature. Fits of spectra from these different sources in the range below 100 cm-1 are consistently achieved with three components at ca. 25, 50, and 80 cm-1, but with distinct relative intensities among the different techniques. It is proposed as the collective nature of the lowest-frequency component and the anion-cation intermolecular vibration nature of the highest-frequency component. The MD results indicate that there is no clear distinction between acoustic and optic vibrations in the spectral range investigated in this work for the ionic liquids [N1114][NTf2] and [N1444][NTf2]. The analysis carried out here agrees in part, but not entirely, with other propositions in the literature, mainly from optical Kerr effect (OKE) and FIR spectroscopies, concerning the intermolecular dynamics of ionic liquids.

4.
J Phys Chem B ; 124(13): 2661-2667, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32182077

ABSTRACT

The terahertz spectrum encodes information about dynamics, structure, and intermolecular interactions of liquids being probed both experimentally and computationally by techniques such as Raman and far-infrared spectroscopies and molecular dynamics (MD) simulation. In the case of room temperature ionic liquids (RTILs), there has been a debate whether a mode observed at about 1.5-2.7 THz (50-90 cm-1) is due to a quasi-lattice structure or the formation of complex ions. Here we show through the analysis of Raman and far-infrared spectra and MD simulation of a typical RTIL that this mode has a collective optic-like character. Then, employing a simple model based on the theory for optical phonons in crystals, we show that a correlation between the frequency of this mode and material parameters holds for different RTILs. These results, which encompass a wide range of samples, reinforce a quasi-lattice view of the liquid phase.

5.
J Chem Phys ; 148(17): 171101, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29739222

ABSTRACT

The phase diagram of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesufonyl)imide, [Pyrr1,4][NTf2], was explored by synchroton X-ray diffraction and Raman scattering measurements as a function of temperature and pressure. Glass transition Tg(p) and melting Tm(p) temperatures were obtained from atmospheric pressure up to ca. 2.0 GPa. We found that both the Tg(p) and Tm(p) curves follow essentially the same pressure dependence. The similarity of pressure coefficients, dTg/dp ≈ dTm/dp, is explained within the non-equilibrium thermodynamics approach for the glass transition by assuming that one of the Ehrenfest equations is appropriated for Tg(p), whereas Tm(p) follows the Clausius-Clapeyron equation valid for the first-order transitions. The results highlight that ionic liquids are excellent model systems to address fundamental questions related to the glass transition.

7.
J Phys Chem B ; 121(42): 9902-9909, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28968103

ABSTRACT

A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN)2], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN)2]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN)2]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.

8.
J Phys Chem B ; 121(17): 4650-4655, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28394613

ABSTRACT

Differential scanning calorimetry, X-ray diffraction, and Raman spectroscopy were used to reveal the premelting events precursors of melting of the ionic liquid triethylsulfonium bis(trifluoromethanesufonyl)imide, [S222][NTf2]. On heating the crystalline phase of [S222][NTf2], melting occurs along a sequence of at least three steps. First, the crystalline long-range order breaks down, but local order is retained. The second step is characterized by conformational freedom of the ethyl chains of cations related to premelting of nonpolar domains, and the complete melting finally occurs when anions acquire conformational freedom. This work provides a microscopic view on the mechanism of melting of [S222][NTf2] in line with the picture of melting taking place as a sequence of structural changes. The results of this work shed light on the understanding of the complex melting process of ionic liquids.

9.
Chem Rev ; 117(10): 7053-7112, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28051847

ABSTRACT

Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

10.
J Chem Phys ; 144(22): 224504, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27306015

ABSTRACT

X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

11.
J Chem Phys ; 144(22): 224505, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27306016

ABSTRACT

Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

SELECTION OF CITATIONS
SEARCH DETAIL
...