Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Parasit Vectors ; 17(1): 290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971776

ABSTRACT

BACKGROUND: Aedes and Anopheles mosquitoes are responsible for tremendous global health burdens from their transmission of pathogens causing malaria, lymphatic filariasis, dengue, and yellow fever. Innovative vector control strategies will help to reduce the prevalence of these diseases. Mass rearing of mosquitoes for research and support of these strategies presently depends on meals of vertebrate blood, which is subject to acquisition, handling, and storage issues. Various blood-free replacements have been formulated for these mosquitoes, but none of these replacements are in wide use, and little is known about their potential impact on competence of the mosquitoes for Plasmodium infection. METHODS: Colonies of Aedes aegypti and Anopheles stephensi were continuously maintained on a blood-free replacement (SkitoSnack; SS) or bovine blood (BB) and monitored for engorgement and hatch rates. Infections of Ae. aegypti and An. stephensi were assessed with Plasmodium gallinaceum and P. falciparum, respectively. RESULTS: Replicate colonies of mosquitoes were maintained on BB or SS for 10 generations of Ae. aegypti and more than 63 generations of An. stephensi. The odds of engorgement by SS- relative to BB-maintained mosquitoes were higher for both Ae. aegypti (OR = 2.6, 95% CI 1.3-5.2) and An. stephensi (OR 2.7, 95% CI 1.4-5.5), while lower odds of hatching were found for eggs from the SS-maintained mosquitoes of both species (Ae. aegypti OR = 0.40, 95% CI 0.26-0.62; An. stephensi OR = 0.59, 95% CI 0.36-0.96). Oocyst counts were similar for P. gallinaceum infections of Ae. aegypti mosquitoes maintained on SS or BB (mean ratio = [mean on SS]/[mean on BB] = 1.11, 95% CI 0.85-1.49). Similar oocyst counts were also observed from the P. falciparum infections of SS- or BB-maintained An. stephensi (mean ratio = 0.76, 95% CI 0.44-1.37). The average counts of sporozoites/mosquito showed no evidence of reductions in the SS-maintained relative to BB-maintained mosquitoes of both species. CONCLUSIONS: Aedes aegypti and An. stephensi can be reliably maintained on SS over multiple generations and are as competent for Plasmodium infection as mosquitoes maintained on BB. Use of SS alleviates the need to acquire and preserve blood for mosquito husbandry and may support new initiatives in fundamental and applied research, including novel manipulations of midgut microbiota and factors important to the mosquito life cycle and pathogen susceptibility.


Subject(s)
Aedes , Anopheles , Mosquito Vectors , Animals , Aedes/parasitology , Aedes/physiology , Anopheles/parasitology , Anopheles/physiology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Plasmodium gallinaceum/physiology , Plasmodium falciparum/physiology , Cattle , Female , Blood/parasitology , Feeding Behavior
2.
Res Sq ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38410426

ABSTRACT

Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 117,350 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.

3.
PLoS Negl Trop Dis ; 16(12): e0010991, 2022 12.
Article in English | MEDLINE | ID: mdl-36525464

ABSTRACT

Plasmodium vivax infections often consist of heterogenous populations of parasites at different developmental stages and with distinct transcriptional profiles, which complicates gene expression analyses. The advent of single cell RNA sequencing (scRNA-seq) enabled disentangling this complexity and has provided robust and stage-specific characterization of Plasmodium gene expression. However, scRNA-seq information is typically derived from the end of each mRNA molecule (usually the 3'-end) and therefore fails to capture the diversity in transcript isoforms documented in bulk RNA-seq data. Here, we describe the sequencing of scRNA-seq libraries using Pacific Biosciences (PacBio) chemistry to characterize full-length Plasmodium vivax transcripts from single cell parasites. Our results show that many P. vivax genes are transcribed into multiple isoforms, primarily through variations in untranslated region (UTR) length or splicing, and that the expression of many isoforms is developmentally regulated. Our findings demonstrate that long read sequencing can be used to characterize mRNA molecules at the single cell level and provides an additional resource to better understand the regulation of gene expression throughout the Plasmodium life cycle.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Humans , Plasmodium vivax/genetics , Protein Isoforms/genetics , Gene Expression Profiling , RNA-Seq , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Sequence Analysis, RNA/methods , High-Throughput Nucleotide Sequencing
4.
Nat Commun ; 13(1): 2949, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618711

ABSTRACT

In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Animals, Genetically Modified , Anopheles/parasitology , Fibrinolysin , Humans , Malaria/parasitology , Mammals , Mice , Mosquito Vectors/genetics , Plasminogen , Plasminogen Activator Inhibitor 1/genetics , Plasmodium/physiology , Sporozoites
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33653959

ABSTRACT

Despite the critical role of Plasmodium sporozoites in malaria transmission, we still know little about the mechanisms underlying their development in mosquitoes. Here, we use single-cell RNA sequencing to characterize the gene expression profiles of 16,038 Plasmodium berghei sporozoites isolated throughout their development from midgut oocysts to salivary glands, and from forced salivation experiments. Our results reveal a succession of tightly regulated changes in gene expression occurring during the maturation of sporozoites and highlight candidate genes that could play important roles in oocyst egress, sporozoite motility, and the mechanisms underlying the invasion of mosquito salivary glands and mammalian hepatocytes. In addition, the single-cell data reveal extensive transcriptional heterogeneity among parasites isolated from the same anatomical site, suggesting that Plasmodium development in mosquitoes is asynchronous and regulated by intrinsic as well as environmental factors. Finally, our analyses show a decrease in transcriptional activity preceding the translational repression observed in mature sporozoites and associated with their quiescent state in salivary glands, followed by a rapid reactivation of the transcriptional machinery immediately upon salivation.


Subject(s)
Anopheles/parasitology , Gene Expression Regulation , Plasmodium berghei/metabolism , Salivary Glands/parasitology , Sporozoites/metabolism , Transcription, Genetic , Animals , Mice
6.
Zoology (Jena) ; 121: 56-71, 2017 04.
Article in English | MEDLINE | ID: mdl-28089345

ABSTRACT

In the female insect, the spermatheca is an ectodermal organ responsible for receiving, maintaining, and releasing sperm to fertilize eggs. The number and morphology of spermathecae vary according to species. Within the spermathecal lumen, substances in the semen and secretions from the spermathecal gland nourish the sperm. Thus, the spermatheca provides an appropriate environment that ensures the long-term viability of sperm. Maintaining sperm viability for long periods within the spermatheca is crucial for insect reproductive success; however, the details of this process remain poorly understood. This review examines several aspects of and gaps in the current understanding of spermatheca biology, including morphology, function, reservoir filling, development, and biochemistry. Despite the importance of the spermatheca in insects, there is little information on the gland secretions and their role in the maintenance and protection of male gametes. Furthermore, in this review, we highlight the current information on spermathecal gland secretions and the likely roles they play in the maintenance and protection of sperm.


Subject(s)
Genitalia, Female/anatomy & histology , Insecta/physiology , Spermatozoa/physiology , Animals , Cell Survival/physiology , Female , Male , Reproduction/physiology
7.
Parasit Vectors ; 7: 195, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24761789

ABSTRACT

BACKGROUND: The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. METHODS: Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. RESULTS: All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and wriggling movements. A similar trend was also observed for swimming pupa, except for imidacloprid, which increased the swimming activity of pupa. Curiously, the insecticides did not affect cell damage in the neuromuscular system of larvae and pupae. CONCLUSIONS: Deltamethrin and spinosad were the main compounds to exhibit lethal effects, which allowed the control of A. aegypti larvae and pupae, and impair their swimming potentially compromising foraging and predation likelihood.


Subject(s)
Aedes/drug effects , Insecticides/pharmacology , Aedes/physiology , Animals , Biological Assay , Larva/drug effects , Larva/physiology , Pupa/drug effects , Pupa/physiology , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...