Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 104: 66-72, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24607161

ABSTRACT

This study was conducted to evaluate the rheological and physicochemical properties of Solanum lycocarpum starch. The thermogravimetric analysis of S. lycocarpum starch showed a typical three-step weight loss pattern. Microscopy revealed significant changes in the granule morphology after hydrothermal treatment. Samples hydrothermally treated at 50°C for 10 min lost 52% of their crystallinity, which was recovered after storage for 7 days at 4°C. However, samples hydrothermally treated at 65°C were totally amorphous. This treatment was sufficient to completely disrupt the starch granule, as evidenced by the absence of an endothermic peak in the DSC thermogram. The RVA of S. lycocarpum starch revealed 4440.7cP peak viscosity, 2660.5cP breakdown viscosity, 2414.1cP final viscosity, 834.3cP setback viscosity, and a pasting temperature of 49.6°C. The low content of resistant starch (10.25%) and high content of digestible starch (89.78%) in S. lycocarpum suggest that this starch may be a good source for the production of hydrolysates, such as glucose syrup and its derivatives.


Subject(s)
Rheology , Solanum/chemistry , Starch/chemistry , Viscosity , Hydrolysis , Solubility
2.
Carbohydr Polym ; 98(2): 1304-10, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24053807

ABSTRACT

In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To=61.25 °C, Tp=64.5 °C, Tc=67.5 °C), gelatinization temperature (ΔT=6.3 °C) ranges and enthalpy changes (ΔH=13.21 J g(-1)) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications.


Subject(s)
Fruit/chemistry , Solanum/chemistry , Starch/chemistry , Amylose/chemistry , Glucose/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Molecular Weight , Spectroscopy, Fourier Transform Infrared , Starch/isolation & purification , Starch/ultrastructure , Temperature , Thermodynamics , Viscosity
3.
Enzyme Res ; 2013: 803415, 2013.
Article in English | MEDLINE | ID: mdl-23606948

ABSTRACT

A commercial amylase (amy) was immobilized by adsorption onto Luffa operculata fibers (LOFs). The derivative LOF-amy presented capacity to hydrolyze starch continuously and repeatedly for over three weeks, preserving more than 80% of the initial activity. This system hydrolyzed more than 97% of starch during 5 min, at room temperature. LOF-amy was capable to hydrolyze starch from different sources, such as maize (93.96%), wheat (85.24%), and cassava (79.03%). A semi-industrial scale reactor containing LOF-amy was prepared and showed the same yield of the laboratory-scale system. After five cycles of reuse, the LOF-amy reactor preserved over 80% of the initial amylase activity. Additionally, the LOF-amy was capable to operate as a kitchen grease trap component in a real situation during 30 days, preserving 30% of their initial amylase activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...