Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 204(2): 191-199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008836

ABSTRACT

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Subject(s)
Animal Distribution , Biological Evolution , Spiders , Animals , Antarctic Regions , Spiders/physiology , Ecosystem , Predatory Behavior , Phylogeny , Arthropods/physiology
2.
Ecol Evol ; 12(12): e9570, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36479030

ABSTRACT

Seabirds influence island ecosystems through nutrient additions and physical disturbance. These influences can have opposing effects on an island's invertebrate predator populations. Spiders (order: Araneae) are an important predator in many terrestrial island ecosystems, yet little is known about how seabird presence influences spider communities at the intraisland scale, or how they respond to seasonality in seabird colony attendance.We investigated the effects of seabird presence and seasonality on ground-active spider community structure (activity-density, family-level richness, age class, and sex structure) and composition at the family-level across five short-tailed shearwater breeding islands around south-eastern Tasmania, Australia. Using 75 pitfall traps (15 per island), spiders were collected inside, near, and outside seabird colonies on each island, at five different stages of the short-tailed shearwater breeding cycle over a year. Pitfall traps were deployed for a total of 2674 days, capturing 1592 spiders from 26 families with Linyphiidae and Lycosidae the most common. Spider activity-density was generally greater inside than outside seabird colonies, while family-level richness was generally higher outside seabird colonies. For these islands, seabird breeding stage did not affect activity-densities, but there were some seasonal changes in age class and sex structures with more adult males captured during winter. Our results provide some of the first insights into the spatial and temporal influences seabirds have on spider communities. We also provide some of the first records of spider family occurrences for south-eastern Tasmanian islands, which will provide an important baseline for assessing future change.

SELECTION OF CITATIONS
SEARCH DETAIL
...