Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(11)2023 10 28.
Article in English | MEDLINE | ID: mdl-38002270

ABSTRACT

The coordination of zinc by histone deacetylase inhibitors (HDACi), altering the bioavailability of zinc to histone deacetylases (HDACs), is key to HDAC enzyme inhibition. However, the ability of zinc binding groups (ZBGs) to alter intracellular free Zn+2 levels, which may have far-reaching effects, has not been explored. Using two HDACis with different ZBGs, we documented shifts in intracellular free Zn+2 concentrations that correlate with subsequent ROS production. Next, we assayed refolding and reactivation of the R175H mutant p53 protein in vitro to provide greater biological context as the activity of this mutant depends on cellular zinc concentration. The data presented demonstrates the differential activity of HDACi in promoting R175H response element (RE) binding. After cells are treated with HDACi, there are differences in R175H mutant p53 refolding and reactivation, which may be related to treatments. Collectively, we show that HDACis with distinct ZBGs differentially impact the intracellular free Zn+2 concentration, ROS levels, and activity of R175H; therefore, HDACis may have significant activity independent of their ability to alter acetylation levels. Our results suggest a framework for reevaluating the role of zinc in the variable or off-target effects of HDACi, suggesting that the ZBGs of HDAC inhibitors may provide bioavailable zinc without the toxicity associated with zinc metallochaperones such as ZMC1.


Subject(s)
Histone Deacetylase Inhibitors , Zinc , Histone Deacetylase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Biological Availability , Zinc/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
Neural Regen Res ; 18(11): 2443-2448, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37282475

ABSTRACT

Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.

3.
Nutrients ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889916

ABSTRACT

A vitamin B12 deficiency (vit. B12 def.) is common in the elderly, because of changes in metabolism. Clinical studies have reported that a vit. B12 def. results in worse outcome after stroke, and the mechanisms through which a vit. B12 def. changes the brain requires further investigation. This study investigated the role of vit. B12 def. on stroke outcome and mechanisms using aged female mice. Eighteen-month-old females were put on a control or vit. B12 def. diet for 4 weeks, after which an ischemic stroke was induced in the sensorimotor cortex. After damage, motor function was measured, the animals were euthanized, and tissues were collected for analysis. Vit. B12 def. animals had increased levels of total homocysteine in plasma and liver, and choline levels were also increased in the liver. Vit. B12 def. animals had larger damage volume in brain tissue and more apoptosis. The cecum tissue pathway analysis showed dysfunction in B12 transport. The analysis of mitochondrial metabolomics in brain tissue showed reduced levels of metabolites involved in the TCA cycle in vit. B12 def. animals. Motor function after stroke was impaired in vit. B12 def. animals. A dietary vit. B12 def. impairs motor function through increased apoptosis and changes in mitochondrial metabolism in brain tissue.


Subject(s)
Ischemic Stroke , Stroke , Vitamin B 12 Deficiency , Animals , Brain , Cecum , Diet , Female , Folic Acid , Homocysteine , Mice , Vitamin B 12
4.
Front Oncol ; 12: 819580, 2022.
Article in English | MEDLINE | ID: mdl-35223500

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with an estimated 750,000 cases diagnosed annually in the United States. Most cases are successfully treated with a simple excision procedure, but ~5% of cases metastasize and have a 5-year survival rate of 25-45%. Thus, identification of biomarkers correlated to cSCC progression may be useful in the early identification of high-risk cSCC and in the development of new therapeutic strategies. This work investigates the role of complement factor H (CFH) in the development of cSCC. CFH is a regulatory component of the complement cascade which affects cell mediated immune responses and increases in complement proteins are associated with poor outcomes in multiple cancer types. We provide evidence that sun exposure may increase levels of CFH, suggesting an immunomodulatory role for CFH early in the development of cSCC. We then document increased levels of CFH in cSCC samples, compared to adjacent normal tissue (ANT) routinely excised in a dermatology clinic which, in paired samples, received the same level of sun exposure. We also provide evidence that levels of CFH are even greater in more advanced cases of cSCC. To provide a potential link between CFH and immune modulation, we assessed immune system function by measuring interferon gamma (IFN-γ) and FOXP3 in patient samples. IFN-γ levels were unchanged in cSCC relative to ANT which is consistent with an ineffective cell-mediated immune response. FOXP3 was used to assess prevalence of regulatory T cells within the tissues, indicating either a derailed or inhibitory immune response. Our data suggest that FOXP3 levels are higher in cSCC than in ANT. Our current working model is that increased CFH downstream of sun exposure is an early event in the development of cSCC as it interferes with proper immune surveillance and decreases the effectiveness of the immune response, and creates a more immunosuppressive environment, thus promoting cSCC progression.

5.
Cell Biol Int ; 45(6): 1288-1295, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33710707

ABSTRACT

There is a growing controversy about the role of the epithelial to mesenchymal transition (EMT) in the fibrosis associated with chronic disease. Recent studies suggest that it is not the EMT transcriptional program but differentiation of progenitor cells, response to chronic inflammation, or some combination of both which cause the appearance of fibroblasts and the production of the extracellular matrix. To address this issue, we study the EMT process in the zebrafish keratocytes which migrate from primary explants of epithelial tissue as these cells are both terminally differentiated and able to divide. To firmly place this EMT process in the context of other systems, we first demonstrate that the zebrafish keratocyte EMT process involves nuclear accumulation of twist and snail/slug transcription factors as part of a TGFßR-mediated EMT process. As assessed by the expression and localization of EMT transcription factors, the zebrafish keratocyte EMT process is reversed by the addition of Rho-activated kinase (ROCK) in combination with TGFßR inhibitors. The complete cycle of EMT to MET observed in this system links these in vitro results more closely to the process of wound healing in vivo. However, the absence of observable activation of EMT transcription factors when keratocytes are cultured on compliant substrata in a TGFß1-containing medium suggests that ROCK signaling, initiated by tension within the sheet, is an essential contributor to the EMT process. Most importantly, the requirement for ROCK activation by culturing on noncompliant substrata suggests that EMT in these terminally differentiated cells would not occur in vivo.


Subject(s)
Epithelial Cells , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1/metabolism , rho-Associated Kinases/metabolism , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/pathology , Zebrafish
6.
J Vis Exp ; (123)2017 05 29.
Article in English | MEDLINE | ID: mdl-28605380

ABSTRACT

The incidence of skin cancer (e.g., squamous cell carcinoma, basal cell carcinoma, and melanoma) has been increasing over the past several years. It is expected that there will be a parallel demand for cutaneous tumor samples for biomedical research studies. Tissue availability, however, is limited due the cost of establishing a biorepository and the lack of protocols available for obtaining clinical samples that do not interfere with clinical operations. A protocol was established to collect and process cutaneous tumor and associated blood and saliva samples that has minimal impact on routine clinical procedures on the date of a Mohs surgery. Tumor samples are collected and processed from patients undergoing their first layer of Mohs surgery for biopsy-proven cutaneous malignancies by the Mohs histotechnologist. Adjacent normal tissue is collected at the time of surgical closure. Additional samples that may be collected are whole-blood and buccal swabs. By utilizing tissue samples that are normally discarded, a biorepository was generated that offers several key advantages by being based in the clinic versus the laboratory setting. These include a wide range of collected samples; access to de-identified patient records, including pathology reports; and, for the typical donor, access to additional samples during follow-up visits.


Subject(s)
Carcinoma, Basal Cell/diagnostic imaging , Carcinoma, Squamous Cell/diagnostic imaging , Melanoma/diagnostic imaging , Mohs Surgery/methods , Skin Neoplasms/diagnostic imaging , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/surgery , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Female , Humans , Melanoma/pathology , Melanoma/surgery , Skin Neoplasms/pathology , Skin Neoplasms/surgery
7.
BMC Cancer ; 16: 316, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27188282

ABSTRACT

BACKGROUND: The BRM and BRG1 tumor suppressor genes are mutually exclusive ATPase subunits of the SWI/SNF chromatin remodeling complex. The human adrenal carcinoma SW13 cell line can switch between a subtype which expresses these subunits, SW13+, and one that expresses neither subunit, SW13-. Loss of BRM expression occurs post-transcriptionally and can be restored via histone deacetylase (HDAC) inhibition. However, most previously used HDAC inhibitors are toxic and broad-spectrum, providing little insight into the mechanism of the switch between subtypes. In this work, we explore the mechanisms of HDAC inhibition in promoting subtype switching and further characterize the oncogenic potential of the two epigenetically distinct SW13 subtypes. METHODS: SW13 subtype morphology, chemotaxis, growth rates, and gene expression were assessed by standard immunofluorescence, transwell, growth, and qPCR assays. Metastatic potential was measured by anchorage-independent growth and MMP activity. The efficacy of HDAC inhibitors in inducing subtype switching was determined by immunofluorescence and qPCR. Histone modifications were assessed by western blot. RESULTS: Treatment of SW13- cells with HDAC1 inhibitors most effectively promotes re-expression of BRM and VIM, characteristic of the SW13+ phenotype. During treatment, hyperacetylation of histone residues and hypertrimethylation of H3K4 is pronounced. Furthermore, histone modification enzymes, including HDACs and KDM5C, are differentially expressed during treatment but several features of this differential expression pattern differs from that seen in the SW13- and SW13+ subtypes. As the SW13- subtype is more proliferative while the SW13+ subtype is more metastatic, treatment with HDACi increases the metastatic potential of SW13 cells while restoring expression of the BRM tumor suppressor. CONCLUSIONS: When compared to the SW13- subtype, SW13+ cells have restored BRM expression, increased metastatic capacity, and significantly different expression of a variety of chromatin remodeling factors including those involved with histone acetylation and methylation. These data are consistent with a multistep mechanism of SW13- to SW13+ conversion and subtype stabilization: histone hypermodification results in the altered expression of chromatin remodeling factors and chromatin epigenetic enzymes and the re-expression of BRM which results in restoration of SWI/SNF complex function and leads to changes in chromatin structure and gene expression that stabilize the SW13+ phenotype.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Gene Expression Profiling/methods , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Acetylation , Cell Line, Tumor , Cell Movement/drug effects , Chromatin Assembly and Disassembly/drug effects , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasm Metastasis , Phenotype , Transcription Factors/genetics
8.
J Vis Exp ; (96)2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25742068

ABSTRACT

Due to their unique motile properties, fish keratocytes dissociated from explant cultures have long been used to study the mechanisms of single cell migration. However, when explants are established, these cells also move collectively, maintaining many of the features which make individual keratocytes an attractive model to study migration: rapid rates of motility, extensive actin-rich lamellae with a perpendicular actin cable, and relatively constant speed and direction of migration. In early explants, the rapid interconversion of cells migrating individually with those migrating collectively allows the study of the role of cell-cell adhesions in determining the mode of migration, and emphasizes the molecular links between the two modes of migration. Cells in later explants lose their ability to migrate rapidly and collectively as an epithelial to mesenchymal transition occurs and genes associated with wound healing and inflammation are differentially expressed. Thus, keratocyte explants can serve as an in vitro model for the reepithelialization that occurs during cutaneous wound healing and can represent a unique system to study mechanisms of collective cell migration in the context of a defined program of gene expression changes. A variety of mutant and transgenic zebrafish lines are available, which allows explants to be established from fish with different genetic backgrounds. This allows the role of different proteins within these processes to be uniquely addressed. The protocols outlined here describe an easy and effective method for establishing these explant cultures for use in a variety of assays related to collective cell migration.


Subject(s)
Cell Movement/physiology , Keratinocytes/cytology , Actins/metabolism , Animals , Epithelial-Mesenchymal Transition , Keratinocytes/metabolism , Tissue Culture Techniques/methods , Wound Healing/physiology , Zebrafish
9.
Exp Cell Res ; 319(12): 1815-1827, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23588205

ABSTRACT

The control of collective cell migration of zebrafish keratocyte sheets in explant culture is of interest for cell migration and epithelial wound healing and depends on the gene expression profile. In a zebrafish genome array, ∼17.5% of the probe sets were differentially expressed greater than two-fold (p≤0.003) between 1 and 7 days of explant culture. Among the differentially expressed genes were a variety of wound healing-related genes and many of the biomarkers for epithelial-mesenchymal transition (EMT), including a switch from keratin and E-cadherin to vimentin and N-cadherin expression and several EMT-related transcription factors were found to be differentially expressed. Supporting evidence for EMT is seen in both morphological change and rearrangement of the actin cytoskeleton and in expression of cadherins during explant culture with a visible disassembly of the cell sheet. TGFß1 and TNFα expression were analyzed by qPCR at various time points and peak differential expression of both cytokines occurred at 3 days, indicating that the EMT process is ongoing under conditions routinely used in the study of fish keratocyte motility. These data establish that an EMT process is occurring during zebrafish keratocyte explant culture and support the use of this system as a wound healing model.


Subject(s)
Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Transcription, Genetic , Wound Healing/genetics , Zebrafish Proteins/metabolism , Actin Cytoskeleton/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Cell Movement , Disease Models, Animal , Epithelial Cells/cytology , Gene Expression Profiling , In Vitro Techniques , Keratins/genetics , Keratins/metabolism , Oligonucleotide Array Sequence Analysis , Transforming Growth Factor alpha/genetics , Transforming Growth Factor alpha/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Vimentin/genetics , Vimentin/metabolism , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...