Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(7): 4577-4588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38109005

ABSTRACT

We previously reported that 2-arachidonoylglycerol (2-AG) synthesis by diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAP) and hydrolysis by monoacylglycerol lipase (MAGL) in rod outer segments (ROS) from bovine retina were differently modified by light applied to the retina. Based on these findings, the aim of the present research was to evaluate whether 2-AG metabolism could be modulated by proteins involved in the visual process. To this end, ROS kept in darkness (DROS) or obtained in darkness and then subjected to light (BROS) were treated with GTPγS and GDPßS, or with low and moderate ionic strength buffers for detaching soluble and peripheral proteins, or soluble proteins, respectively. Only DAGL activity was stimulated by the application of light to the ROS. GTPγS-stimulated DAGL activity in DROS reached similar values to that observed in BROS. The studies using different ionic strength show that (1) the highest decrease in DROS DAGL activity was observed when both phosphodiesterase (PDE) and transducin α (Tα) are totally membrane-associated; (2) the decrease in BROS DAGL activity does not depend on PDE association to membrane, and that (3) MAGL activity decreases, both in DROS and BROS, when PDE is not associated to the membrane. Our results indicate that the bioavailability of 2-AG under light conditions is favored by G protein-stimulated increase in DAGL activity and hindered principally by Tα/PDE association with the ROS membrane, which decreases DAGL activity.


Subject(s)
Arachidonic Acids , Endocannabinoids , Glycerides , Rod Cell Outer Segment , Animals , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Rod Cell Outer Segment/metabolism , Cattle , Glycerides/metabolism , Light Signal Transduction , Transducin/metabolism , Light , Lipoprotein Lipase/metabolism , Phosphoric Diester Hydrolases/metabolism , Vision, Ocular/physiology , Vision, Ocular/drug effects
2.
Neuroscience ; 362: 168-180, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-28844762

ABSTRACT

Alzheimer's disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aß) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aß oligomers or fibrils. These Aß conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aß1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aß1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aß1-40 oligomers or fibrils. These results show a differential effect of Aß1-40 peptide on 2-AG metabolism depending on its conformation.


Subject(s)
Amyloid beta-Peptides/metabolism , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Peptide Fragments/metabolism , Synaptosomes/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Humans , Lipid Peroxidation , Lipoprotein Lipase/metabolism , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Peptide Fragments/chemistry , Peptide Fragments/ultrastructure , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Rats, Wistar , Synaptosomes/ultrastructure
3.
Arch Biochem Biophys ; 604: 121-7, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27355428

ABSTRACT

The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events.


Subject(s)
Aging , Arachidonic Acid/chemistry , Cell Nucleus/metabolism , Docosahexaenoic Acids/chemistry , Lipid Metabolism , Tretinoin/chemistry , Animals , Diglycerides/chemistry , Glycerophosphates/chemistry , Homeostasis , Hydrolysis , Lipase/metabolism , Monoglycerides/chemistry , Rats , Rats, Wistar , Signal Transduction
4.
Exp Gerontol ; 55: 134-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24768821

ABSTRACT

2-Arachidonoylglycerol (2-AG) is one of the principal endocannabinoids involved in the protection against neurodegenerative processes. Cannabinoids primarily interact with the seven-segment transmembrane cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), both of which are expressed in the central nervous system (CNS). The level of 2-AG is controlled through key enzymes responsible for its synthesis or degradation. We have previously observed a deregulation of 2-AG metabolism in physiological aging. The aim of this study was to analyze how 2-AG metabolism is modulated by CB1/CB2 receptors during aging. To this end, both CB1 and CB2 receptor expression and the enzymatic activities (diacylglycerol lipase (DAGL), lysophosphatidate phosphohydrolase (LPAase) and monoacylglycerol lipase (MAGL)) involved in 2-AG metabolism were analyzed in the presence of cannabinoid receptor (CBR) agonists (WIN and JWH) and/or antagonists (SR1 and SR2) in synaptosomes from adult and aged rat cerebral cortex (CC). Our results demonstrate that: (a) aging decreases the expression of both CBRs; (b) LPAase inhibition, due to the individual action of SR1 or SR2, is reverted in the presence of both antagonists together; (c) LPAase activity is regulated mainly by the CB1 receptor in adult and in aged synaptosomes while the CB2 receptor acquires importance when CB1 is blocked; (d) modulation via CBRs of DAGL and MAGL by both antagonists occurs only in aged synaptosomes, stimulating DAGL and inhibiting MAGL activities; (e) only DAGL stimulation is reverted by WIN. Taken together, the results of the present study show that CB1 and/or CB2 receptor antagonists trigger a significant modulation of 2-AG metabolism, underlining their relevance as therapeutic strategy for controlling endocannabinoid levels in physiological aging.


Subject(s)
Aging/metabolism , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Receptors, Cannabinoid/physiology , Animals , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Lipoprotein Lipase/metabolism , Monoacylglycerol Lipases/metabolism , Phosphatidate Phosphatase/metabolism , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism , Synaptosomes/metabolism
5.
Biofactors ; 39(2): 209-20, 2013.
Article in English | MEDLINE | ID: mdl-23281018

ABSTRACT

One of the principal monoacylglycerol (MAG) species in animal tissues is 2-arachidonoylglycerol (2-AG), and the diacylglycerol lipase (DAGL) pathway is the most important 2-AG biosynthetic pathway proposed to date. Lysophosphatidate phosphatase (LPAase) activity is part of another 2-AG-forming pathway in which monoacylglycerol lipase (MAGL) is the major degrading enzyme. The purpose of this study was to analyze the manner in which DAGL, LPAase, and MAGL enzymes are modified in the central nervous system (CNS) during aging. To this end, diacylglycerols (DAGs) and MAGs of different composition were used as substrates of DAGL and MAGL, respectively. All enzymatic activities were evaluated in membrane and soluble fractions as well as in synaptic terminals from the cerebral cortex (CC) of adult and aged rats. Results related to 2-AG metabolism show that aging: (a) decreases DAGL-α expression in the membrane fraction whereas in synaptosomes it increases DAGL-ß and decreases MAGL expression; (b) decreases LPAase activity in both membrane and soluble fractions; (c) decreases DAGL and stimulates LPAase activities in CC synaptic terminals; (d) stimulates membrane-associated MAGL-coupled DAGL activity; and (e) stimulates MAGL activity in CC synaptosomes. Our results also reveal that during aging the net balance between the enzymatic activities involved in 2-AG synthesis and breakdown is low availability of 2-AG in CC membrane fractions and synaptic terminals. Taken together, our results lead us to conclude that these enzymes play crucial roles in the regulation of 2-AG tissue levels during aging.


Subject(s)
Aging/physiology , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Animals , Cerebral Cortex/enzymology , Cerebral Cortex/metabolism , Diglycerides/metabolism , Fatty Acids/metabolism , Immunoblotting , Lipoprotein Lipase/metabolism , Male , Monoacylglycerol Lipases/metabolism , Monoglycerides/metabolism , Rats , Rats, Wistar , Synaptosomes/enzymology , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...