Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Biochem Zool ; 81(5): 594-604, 2008.
Article in English | MEDLINE | ID: mdl-18754717

ABSTRACT

Physiological responses (oxygen consumption) and behavioral responses (feeding and activity) of the mud snails Hydrobia ulvae and Hydrobia glyca at different salinities (20 per thousand-80 per thousand) and temperatures (20 degrees and 30 degrees C) were studied. After 24 h under experimental conditions, both Hydrobia species already showed maximal activities (>90%) for a wide salinity range (30 per thousand-70 per thousand), with significant differences in activity between species only outside the usual salinity range of the studied lagoon. In contrast, egestion rates of H. glyca were significantly higher at the lowest salinities tested (30 per thousand and 40 per thousand) irrespective of water temperature, whereas egestion rates of H. ulvae were always significantly higher (57% on average) at 20 degrees C than at 30 degrees C and at the usual salinities found in the field (40 per thousand and 50 per thousand). Both species showed an oxyregulatory response to dissolved oxygen concentrations ranging from saturation to 1.5 mg O(2) L(-1), although specific oxygen consumption rates were significantly higher at 30 degrees C than at 20 degrees C (Q(10)=1.47+/-0.08 for H. ulvae and Q(10)=12.1+/-0.06 for H. glyca) and at the lowest salinities (30 per thousand-50 per thousand for H. ulvae and 30 per thousand-40 per thousand for H. glyca). On average, specific rates were higher for the smaller-sized H. glyca (1.64+/-0.03 microg O(2) mg(-1) ash-free dry weight [AFDW]) than for H. ulvae (1.35+/-0.03 microg O(2) mg(-1) AFDW). Despite the overlapping of their tolerances to high temperatures and salinities, the observed interspecies differences could play a certain role in the distribution of H. ulvae and H. glyca in the studied habitat. In particular, the decreasing feeding activity but increasing respiration of H. ulvae at 30 degrees C for salinities that usually occur in the studied lagoon could represent disadvantages to H. glyca during the warm period.


Subject(s)
Acclimatization/physiology , Demography , Ecosystem , Feeding Behavior/physiology , Snails/physiology , Water/chemistry , Animals , Models, Biological , Oxygen Consumption/physiology , Sodium Chloride/analysis , Species Specificity , Temperature
2.
Physiol Biochem Zool ; 79(5): 866-77, 2006.
Article in English | MEDLINE | ID: mdl-16927233

ABSTRACT

Results of field surveys and laboratory measurements of oxygen consumption and body fluid osmolality at different salinities in the mysids Neomysis integer, Mesopodopsis slabberi, and Rhopalophthalmus mediterraneus from the Guadalquivir estuary (southwest Spain) were used to test the hypothesis that osmotic stress (oxygen consumption vs. isosmotic points) was lowest at salinities that field distributions suggest are optimal. The three species showed overlapping spatial distributions within the estuary but clear segregation along the salinity gradient: N. integer, M. slabberi, and R. mediterraneus displayed maximal densities at lower, intermediate, and higher salinities, respectively. Adults of N. integer were extremely efficient hyperregulators (isosmotic point 30 per thousand) over the full salinity range tested (3 per thousand-32 per thousand), and their oxygen consumption rates were independent of salinity; adults of M. slabberi were strong hyper- and hyporegulators at salinities between 7 per thousand and 29 per thousand (isosmotic point, 21 per thousand) and showed higher oxygen consumptions at the lowest salinity (6 per thousand); adults of R. mediterraneus hyperregulated at salinities between 19 per thousand and seawater (isosmotic point, 36 per thousand), with the lowest oxygen consumption at salinity around their isosmotic point (35 per thousand). Thus, the osmoregulation capabilities of M. slabberi and R. mediterraneus seem to determine the salinity ranges in which most of their adults live, but this is not so for adults of N. integer. Moreover, maximal field densities of M. slabberi (males and females) and R. mediterraneus (males) occur at the same salinities as the lowest oxygen consumption. In contrast, field distribution of N. integer was clearly biased toward the lower end of the salinity ranges within which it osmoregulated. We hypothesize that the greater euryhalinity of N. integer makes it possible for this species to avoid competition with R. mediterraneus by inhabiting the more stressful oligohaline zone.


Subject(s)
Climate , Crustacea/physiology , Ecosystem , Oxygen Consumption/physiology , Water-Electrolyte Balance/physiology , Animals , Female , Male , Sodium Chloride/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...