Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small ; 20(20): e2308439, 2024 May.
Article in English | MEDLINE | ID: mdl-38112230

ABSTRACT

Graphene holds great potential for superconductivity due to its pure 2D nature, the ability to tune its carrier density through electrostatic gating, and its unique, relativistic-like electronic properties. At present, still far from controlling and understanding graphene superconductivity, mainly because the selective introduction of superconducting properties to graphene is experimentally very challenging. Here, a method is developed that enables shaping at will graphene superconductivity through a precise control of graphene-superconductor junctions. The method combines the proximity effect with scanning tunnelling microscope (STM) manipulation capabilities. Pb nano-islands are first grown that locally induce superconductivity in graphene. Using a STM, Pb nano-islands can be selectively displaced, over different types of graphene surfaces, with nanometre scale precision, in any direction, over distances of hundreds of nanometres. This opens an exciting playground where a large number of predefined graphene-superconductor hybrid structures can be investigated with atomic scale precision. To illustrate the potential, a series of experiments are performed, rationalized by the quasi-classical theory of superconductivity, going from the fundamental understanding of superconductor-graphene-superconductor heterostructures to the construction of superconductor nanocorrals, further used as "portable" experimental probes of local magnetic moments in graphene.

2.
Nat Commun ; 14(1): 6677, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865684

ABSTRACT

Low dimensional carbon-based materials can show intrinsic magnetism associated to p-electrons in open-shell π-conjugated systems. Chemical design provides atomically precise control of the π-electron cloud, which makes them promising for nanoscale magnetic devices. However, direct verification of their spatially resolved spin-moment remains elusive. Here, we report the spin-polarization of chiral graphene nanoribbons (one-dimensional strips of graphene with alternating zig-zag and arm-chair boundaries), obtained by means of spin-polarized scanning tunnelling microscopy. We extract the energy-dependent spin-moment distribution of spatially extended edge states with π-orbital character, thus beyond localized magnetic moments at radical or defective carbon sites. Guided by mean-field Hubbard calculations, we demonstrate that electron correlations are responsible for the spin-splitting of the electronic structure. Our versatile platform utilizes a ferromagnetic substrate that stabilizes the organic magnetic moments against thermal and quantum fluctuations, while being fully compatible with on-surface synthesis of the rapidly growing class of nanographenes.

4.
Nat Commun ; 10(1): 2211, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101815

ABSTRACT

The interaction among magnetic moments screened by conduction electrons drives quantum phase transitions between magnetically ordered and heavy-fermion ground states. Here, starting from isolated magnetic impurities in the Kondo regime, we investigate the formation of the finite size analogue of a heavy Fermi liquid. We build regularly-spaced chains of Co adatoms on a metallic surface by atomic manipulation. Scanning tunneling spectroscopy is used to obtain maps of the Kondo resonance intensity with sub-atomic resolution. For sufficiently small interatomic separation, the spatial distribution of Kondo screening does not coincide with the position of the adatoms. It also develops enhancements at both edges of the chains. Since we can rule out any other interaction between Kondo impurities, this is explained in terms of the indirect hybridization of the Kondo orbitals mediated by a coherent electron gas, the mechanism that causes the emergence of heavy quasiparticles in the thermodynamic limit.

5.
Nano Lett ; 19(5): 3027-3032, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30998364

ABSTRACT

Bulk and single-layer 2 H-NbSe2 exhibit identical charge density wave order (CDW) with a quasi-commensurate 3 × 3 superlattice periodicity. Here we combine scanning tunnelling microscopy (STM) imaging at T = 1 K of 2 H-NbSe2 with first-principles density functional theory (DFT) calculations to investigate the structural atomic rearrangement of this CDW phase. Our calculations for single-layers reveal that six different atomic structures are compatible with the 3 × 3 CDW distortion, although all of them lie on a very narrow energy range of at most 3 meV per formula unit, suggesting the coexistence of such structures. Our atomically resolved STM images of bulk 2 H-NbSe2 unambiguously confirm this by identifying two of these structures. Remarkably, these structures differ from the X-ray crystal structure reported for the bulk 3 × 3 CDW which in fact is also one of the six DFT structures located for the single-layer. Our calculations also show that due to the minute energy difference between the different phases, the ground state of the 3 × 3 CDW could be extremely sensitive to doping, external strain or internal pressure within the crystal. The presence of multiphase CDW order in 2 H-NbSe2 may provide further understanding of its low temperature state and the competition between different instabilities.

6.
Small ; 15(12): e1804713, 2019 03.
Article in English | MEDLINE | ID: mdl-30748106

ABSTRACT

Molecular recognition is a crucial driving force for molecular self-assembly. In many cases molecules arrange in the lowest energy configuration following a lock-and-key principle. When molecular flexibility comes into play, the induced-fit effect may govern the self-assembly. Here, the self-assembly of dicyanovinyl-hexathiophene (DCV6T) molecules, a prototype specie for highly efficient organic solar cells, on Au(111) by using low-temperature scanning tunneling microscopy and atomic force microscopy is investigated. DCV6T molecules assemble on the surface forming either islands or chains. In the islands the molecules are straight-the lowest energy configuration in gas phase-and expose the dicyano moieties to form hydrogen bonds with neighbor molecules. In contrast, the structure of DCV6T molecules in the chain assemblies deviates significantly from their gas-phase analogues. The seemingly energetically unfavorable bent geometry is enforced by hydrogen-bonding intermolecular interactions. Density functional theory calculations of molecular dimers quantitatively demonstrate that the deformation of individual molecules optimizes the intermolecular bonding structure. The intermolecular bonding energy thus drives the chain structure formation, which is an expression of the induced-fit effect.

7.
J Phys Chem Lett ; 9(1): 25-30, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29220194

ABSTRACT

Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band's effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theory.

8.
ACS Nano ; 11(11): 11661-11668, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29049879

ABSTRACT

We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon's band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate's band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.

9.
Nano Lett ; 17(4): 2667-2673, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28323430

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) enables sensitive chemical studies and materials identification, relying on electromagnetic (EM) and chemical-enhancement mechanisms. Here we introduce a tool for the correlative nanoimaging of EM and SERS hotspots, areas of strongly enhanced EM fields and Raman scattering, respectively. To that end, we implemented a grating spectrometer into a scattering-type scanning near-field optical microscope (s-SNOM) for mapping of both the elastically and inelastically (Raman) scattered light from the near-field probe, that is, a sharp silicon tip. With plasmon-resonant gold dimers (canonical SERS substrates) we demonstrate with nanoscale spatial resolution that the enhanced Raman scattering from the tip is strongly correlated with its enhanced elastic scattering, the latter providing access to the EM-field enhancement at the illumination frequency. Our technique has wide application potential in the correlative nanoimaging of local-field enhancement and SERS efficiency as well as in the investigation and quality control of novel SERS substrates.

10.
Nat Commun ; 6: 8988, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26603561

ABSTRACT

The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions.

11.
Nano Lett ; 15(6): 4024-8, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25942560

ABSTRACT

The magnetism of single atoms and molecules is governed by the atomic scale environment. In general, the reduced symmetry of the surrounding splits the d states and aligns the magnetic moment along certain favorable directions. Here, we show that we can reversibly modify the magnetocrystalline anisotropy by manipulating the environment of single iron(II) porphyrin molecules adsorbed on Pb(111) with the tip of a scanning tunneling microscope. When we decrease the tip-molecule distance, we first observe a small increase followed by an exponential decrease of the axial anisotropy on the molecules. This is in contrast to the monotonous increase observed earlier for the same molecule with an additional axial Cl ligand ( Nat. Phys. 2013 , 9 , 765 ). We ascribe the changes in the anisotropy of both species to a deformation of the molecules in the presence of the attractive force of the tip, which leads to a change in the d level alignment. These experiments demonstrate the feasibility of a precise tuning of the magnetic anisotropy of an individual molecule by mechanical control.

12.
Phys Rev Lett ; 114(15): 157001, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933331

ABSTRACT

The type I superconductor lead (Pb) has been theoretically predicted to be a two-band superconductor. We use scanning tunneling spectroscopy (STS) to resolve two superconducting gaps with an energy difference of 150 µeV. Tunneling into Pb(111), Pb(110), and Pb(100) crystals reveals a strong dependence of the two coherence peak intensities on the crystal orientation. We show that this is the result of a selective tunneling into the two bands at the energy of the two coherence peaks. This is further sustained by the observation of signatures of the Fermi sheets in differential conductance maps around subsurface defects. A modification of the density of states of the two bands by adatoms on the surface confirms the different orbital character of each of the two subbands.

13.
ACS Nano ; 8(10): 10715-22, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25244124

ABSTRACT

Dicyanovinyl-quinquethiophene (DCV5T-Me2) is a prototype conjugated oligomer for highly efficient organic solar cells. This class of oligothiophenes are built up by an electron-rich donor (D) backbone and terminal electron-deficient acceptor (A) moieties. Here, we investigated its structural and electronic properties when it is adsorbed on a Au(111) surface using low temperature scanning tunneling microscopy/spectroscopy (STM/STS) and atomic force microscopy (AFM). We find that DCV5T-Me2 self-assembles in extended chains, stabilized by intercalated Au atoms. The effect of metal-ligand hybridization with Au adatoms causes an energetic downshift of the DCV5T-Me2 lowest unoccupied molecular orbital (LUMO) with respect to the uncoordinated molecules on the surface. The asymmetric coordination of a gold atom to only one molecular end group leads to an asymmetric localization of the LUMO and LUMO+1 states at opposite sides. Using model density functional theory (DFT) calculations, we explain such orbital reshaping as a consequence of linear combinations of the original LUMO and LUMO+1 orbitals, mixed by the attachment of a bridging Au adatom. Our study shows that the alignment of molecular orbitals and their distribution within individual molecules can be modified by contacting them to metal atoms in specific sites.

14.
Nano Lett ; 13(10): 4840-3, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23985020

ABSTRACT

The surface-assisted intramolecular ligand reaction of a porphyrin molecule adsorbed on Au(111) is studied by scanning tunneling microscopy and spectroscopy. The temperature-induced stepwise transformation of iron octaethylporphyrin proceeds via a concentric electrocyclic ring closure, with the final product iron tetrabenzoporphyrin being identified by its characteristic Kondo resonance. Along with the transformation of the organic ligand, changes in the magnetic fingerprint are observed, indicating an increasing coupling of the iron spin with the substrate electrons.


Subject(s)
Coordination Complexes/chemistry , Iron/chemistry , Porphyrins/chemistry , Gold/chemistry , Ligands , Magnetic Phenomena , Microscopy, Scanning Tunneling , Models, Molecular , Porphyrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...