Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(1): e0189247, 2018.
Article in English | MEDLINE | ID: mdl-29320511

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads.


Subject(s)
Cytokines/antagonists & inhibitors , Drug Discovery , Lung/drug effects , Cells, Cultured , Cytokines/biosynthesis , Epithelial Cells/drug effects , Humans , Lung/cytology , Lung/metabolism , Real-Time Polymerase Chain Reaction , Thymic Stromal Lymphopoietin
2.
Front Aging Neurosci ; 9: 435, 2017.
Article in English | MEDLINE | ID: mdl-29358916

ABSTRACT

The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.

3.
Mol Cell Biol ; 36(23): 2967-2982, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27644329

ABSTRACT

The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, including Akt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. We exploited this differential mechanism of regulation by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development.

4.
Neuro Oncol ; 18(7): 950-61, 2016 07.
Article in English | MEDLINE | ID: mdl-26755073

ABSTRACT

BACKGROUND: Glioblastoma (GBM) or grade IV astrocytoma is one of the most devastating human cancers. The loss of DFF40/CAD, the key endonuclease that triggers oligonucleosomal DNA fragmentation during apoptosis, has been linked to genomic instability and cell survival after radiation. Despite the near inevitability of GBM tumor recurrence after treatment, the relationship between DFF40/CAD and GBM remains unexplored. METHODS: We studied the apoptotic behavior of human GBM-derived cells after apoptotic insult. We analyzed caspase activation and the protein levels and subcellular localization of DFF40/CAD apoptotic endonuclease. DFF40/CAD was also evaluated in histological sections from astrocytic tumors and nontumoral human brain. RESULTS: We showed that GBM cells undergo incomplete apoptosis without generating oligonucleosomal DNA degradation despite the correct activation of executioner caspases. The major defect of GBM cells relied on the improper accumulation of DFF40/CAD at the nucleoplasmic subcellular compartment. Supporting this finding, DFF40/CAD overexpression allowed GBM cells to display oligonucleosomal DNA degradation after apoptotic challenge. Moreover, the analysis of histological slices from astrocytic tumors showed that DFF40/CAD immunoreactivity in tumoral GFAP-positive cells was markedly reduced when compared with nontumoral samples. CONCLUSIONS: Our data highlight the low expression levels of DFF40/CAD and the absence of DNA laddering as common molecular traits in GBM. These findings could be of major importance for understanding the malignant behavior of remaining tumor cells after radiochemotherapy.


Subject(s)
Apoptosis/genetics , Caspases/metabolism , DNA/metabolism , Deoxyribonucleases/deficiency , Exoribonucleases/genetics , Glioblastoma/enzymology , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , DNA/genetics , Humans , Poly-ADP-Ribose Binding Proteins
5.
J Biol Chem ; 290(34): 20841-20855, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26124276

ABSTRACT

Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Caspases/metabolism , Chromatin/drug effects , Enzyme Inhibitors/pharmacology , Necrosis/enzymology , Amino Acid Chloromethyl Ketones/pharmacology , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Benzophenanthridines/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspases/genetics , Cell Line, Tumor , Chromatin/metabolism , Chromatin/ultrastructure , Colchicine/pharmacology , Enzyme Activation/drug effects , Gene Expression Regulation , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Necrosis/chemically induced , Necrosis/genetics , Neurons , Nocodazole/pharmacology , Peptidomimetics/pharmacology , Quinolines/pharmacology , Rotenone/pharmacology , Signal Transduction , Staurosporine/pharmacology , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...