Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 78(6): 2714-2721, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35393723

ABSTRACT

BACKGROUND: Myzus persicae (Hemiptera: Aphididae) is considered one of most important agricultural pests in the world. It is one of the main pests in protected pepper crops under glasshouse conditions in Southeastern Spain, but its control is limited as a consequence of the few available authorized insecticides and their incompatibility with the natural enemies. Some essential oils and pure compounds such as anise (Pimpinella anisum) or farnesol are repellent and/or toxic to aphids. Their use as a botanical insecticides can be an alternative for aphid control in pepper. RESULTS: The effect of farnesol was evaluated against M. persicae in a new bioassay developed to test the contact effect (aqueous formulation of the products) on aphids in laboratory conditions. Aniseed essential oil, geraniol and (Z)-jasmone at 0.6% causes an aphid mortality of >50%; and farnesol was the most effective (93.67% mortality). Farnesol nanoemulsions between 0.2% and 0.6% were formulated with an IKA-Labor Pilot dispersing machine (7940 rpm for 10 min) using Tween 80 as a surfactant. These formulations were tested on field experiments (glasshouse conditions) on pepper crops for 2 years. Foliar applications of farnesol at a concentration of 0.4% in field conditions causes a high reduction in aphid populations, with efficacies of ≈70-80% with respect to the control, similar to or even higher than the efficacy of the reference pyrethrin insecticide. CONCLUSION: Farnesol showed a great aphicidal effect against M. persicae. The use of this molecule in integrated pest management programs combined with natural enemies is a good option for future control of M. persicae. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Oils, Volatile , Pyrethrins , Animals , Crops, Agricultural , Farnesol/pharmacology , Insecticides/pharmacology , Oils, Volatile/pharmacology , Pest Control, Biological , Pyrethrins/pharmacology
2.
Chem Biol Interact ; 229: 36-43, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25636489

ABSTRACT

The profitable insecticidal action of monoterpenoids prompted us to test their efficiency against stored-grain beetle species, via inhibition of acetylcholinesterase (AChE). For this, we first studied the ability of the monoterpenoids geraniol, linalool, camphor, fenchone, carvone and γ-terpinene, besides the phenylpropanoids trans-anethole and estragole to inhibit Electrophorus AChE. The results indicated that while AChE activity increased (15-35%) with 40 µM geraniol, camphor, γ-terpinene and linalool, the activity decreased (60-40%) with 5mM carvone, γ-terpinene, and fenchone. The Km for AChE was 0.52 ± 0.02 mM in control assays, which fell to 0.28 ± 0.01 mM or 0.32 ± 0.01 mM in assays with 20 µM linalool or γ-terpinene added. In the millimolar range, the terpenoids behaved as weak inhibitors. Unexpectedly, AChE inhibition by camphor, carvone, γ-terpinene, and fenchone gave Hill numbers ranging 2.04-1.57, supporting the idea that AChE was able to lodge more than one monoterpenoid molecule. The plots of 1/v vs. 1/S at varying monoterpenoid provided straight lines, fenchone and γ-terpinene acting as competitive inhibitors and carvone and camphor as non-competitive inhibitors. Moreover, the secondary plots of the slope KM(app)/Vmax(app) vs. [I] and of 1/Vmax(app) vs. [I] gave parabolic curves, which lent support to the proposed capacity of AChE to bind more than one monoterpenoid molecule. The fitting of the curves to a second-order polynomial equation allowed us to calculate the inhibition constants for the interaction of AChE with fenchone, γ-terpinene, carvone and camphor. The previously unnoticed increase in AChE activity with monoterpenoids should be considered as a reminder when advising the use of essential oils of plants or their constituents as anti-AChE agents to attenuate pathological signs of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Anisoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Electrophorus/metabolism , Enzyme Activation/drug effects , Fish Proteins/metabolism , Monoterpenes/pharmacology , Animals , Anisoles/chemistry , Cholinesterase Inhibitors/chemistry , Humans , Kinetics , Monoterpenes/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...