Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Antimicrob Agents Chemother ; 58(4): 1897-906, 2014.
Article in English | MEDLINE | ID: mdl-24395235

ABSTRACT

Reference broth microdilution methods of Candida echinocandin susceptibility testing are limited by interlaboratory variability in caspofungin MICs. Recently revised Clinical and Laboratory Standards Institute (CLSI) breakpoint MICs for echinocandin nonsusceptibility may not be valid for commercial tests employed in hospital laboratories. Indeed, there are limited echinocandin susceptibility testing data from hospital laboratories. We conducted a multicenter retrospective study of 9 U.S., Australian, and New Zealand hospitals that routinely tested Candida bloodstream isolates for echinocandin susceptibility from 2005 to 2013. Eight hospitals used Sensititre YeastOne assays. The Candida spp. were C. albicans (n=1,067), C. glabrata (n=911), C. parapsilosis (n=476), C. tropicalis (n=185), C. krusei (n=104), and others (n=154). Resistance and intermediate rates were ≤1.4% and ≤3%, respectively, for each echinocandin against C. albicans, C. parapsilosis, and C. tropicalis. Resistance rates among C. glabrata and C. krusei isolates were ≤7.5% and ≤5.6%, respectively. Caspofungin intermediate rates among C. glabrata and C. krusei isolates were 17.8% and 46.5%, respectively, compared to ≤4.3% and ≤4.4% for other echinocandins. Using CLSI breakpoints, 18% and 19% of C. glabrata isolates were anidulafungin susceptible/caspofungin nonsusceptible and micafungin susceptible/caspofungin nonsusceptible, respectively; similar discrepancies were observed for 38% and 39% of C. krusei isolates. If only YeastOne data were considered, interhospital modal MIC variability was low (within 2 doubling dilutions for each agent). In conclusion, YeastOne assays employed in hospitals may reduce the interlaboratory variability in caspofungin MICs against Candida species that are observed between reference laboratories using CLSI broth microdilution methods. The significance of classifying isolates as caspofungin intermediate and anidulafungin/micafungin susceptible will require clarification in future studies.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Echinocandins/pharmacology , Anidulafungin , Caspofungin , Humans , Lipopeptides/pharmacology , Micafungin , Microbial Sensitivity Tests
3.
Biomaterials ; 27(24): 4304-14, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16635526

ABSTRACT

Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Silver/pharmacology , Wound Healing/physiology , Wounds and Injuries/microbiology , Bacterial Infections/prevention & control , Biocompatible Materials , Cells, Cultured , Humans , Mycoses/prevention & control , Wounds and Injuries/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...