Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 39(3): 110723, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443160

ABSTRACT

Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome.


Subject(s)
Bacteriophages , Listeria monocytogenes , Bacteriophages/genetics , Listeria monocytogenes/genetics , Lysogeny , Prophages/genetics , SOS Response, Genetics
2.
Cell Rep ; 32(4): 107956, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32726621

ABSTRACT

Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.


Subject(s)
Bacterial Proteins/genetics , Listeria monocytogenes/metabolism , Lysogeny/physiology , Transcription Factors/genetics , Animals , Bacterial Proteins/metabolism , Bacteriophages/genetics , Female , Listeriosis/metabolism , Mice , Mice, Inbred C57BL , Prophages/genetics , Transcription Factors/metabolism , Virus Activation/physiology
3.
Nat Commun ; 10(1): 5288, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754112

ABSTRACT

Bacterial pathogens often carry multiple prophages and other phage-derived elements within their genome, some of which can produce viral particles in response to stress. Listeria monocytogenes 10403S harbors two phage elements in its chromosome, both of which can trigger bacterial lysis under stress: an active prophage (ϕ10403S) that promotes the virulence of its host and can produce infective virions, and a locus encoding phage tail-like bacteriocins. Here, we show that the two phage elements are co-regulated, with the bacteriocin locus controlling the induction of the prophage and thus its activity as a virulence-associated molecular switch. More specifically, a metalloprotease encoded in the bacteriocin locus is upregulated in response to stress and acts as an anti-repressor for CI-like repressors encoded in each phage element. Our results provide molecular insight into the phenomenon of polylysogeny and its intricate adaptation to complex environments.


Subject(s)
Bacteriophages/immunology , Chromosomes, Bacterial/immunology , Listeria monocytogenes/immunology , Prophages/immunology , Amino Acid Sequence , Bacteriocins/genetics , Bacteriocins/immunology , Bacteriolysis/immunology , Bacteriophages/genetics , Bacteriophages/physiology , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/virology , Genome, Bacterial/genetics , Genome, Bacterial/immunology , Genome, Viral/genetics , Genome, Viral/immunology , Host-Pathogen Interactions/immunology , Listeria monocytogenes/genetics , Listeria monocytogenes/virology , Lysogeny/genetics , Lysogeny/immunology , Metalloproteases/genetics , Metalloproteases/immunology , Prophages/genetics , Prophages/physiology , Sequence Homology, Amino Acid , Virus Activation/genetics , Virus Activation/immunology
4.
Curr Opin Microbiol ; 38: 81-87, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28544996

ABSTRACT

Bacteriophages are ubiquitous and affect most facets of life, from evolution of bacteria, through ecology and global biochemical cycling to human health. The interactions between phages and bacteria often lead to biological novelty and an important milestone in this process is the ability of phages to regulate their host's behavior. In this review article, we will focus on newly reported cases that demonstrate how temperate phages regulate bacterial gene expression and behavior in a variety of bacterial species, pathogenic and environmental. This regulation is mediated by diverse mechanisms such as transcription factors, sRNAs, DNA rearrangements, and even controlled bacterial lysis. The outcome is mutualistic relationships that enable adaptively enhanced communal phage-host fitness under specific conditions.


Subject(s)
Bacteria/genetics , Bacteria/virology , Gene Expression Regulation, Bacterial , Host-Parasite Interactions , Lysogeny , Prophages/genetics
5.
Infect Immun ; 85(6)2017 06.
Article in English | MEDLINE | ID: mdl-28373357

ABSTRACT

The nitrogen phosphotransferase system (PTSNtr) is a regulatory cascade present in many bacteria, where it controls different functions. This system is usually composed of three basic components: enzyme INtr (EINtr), NPr, and EIIANtr (encoded by the ptsP, ptsO, and ptsN genes, respectively). In Legionella pneumophila, as well as in many other Legionella species, the EIIANtr component is missing. However, we found that deletion mutations in both ptsP and ptsO are partially attenuated for intracellular growth. Furthermore, these two PTSNtr components were found to be required for maximal expression of effector-encoding genes regulated by the transcriptional activator PmrA. Genetic analyses which include the construction of single and double deletion mutants and overexpression of wild-type and mutated forms of EINtr, NPr, and PmrA indicated that the PTSNtr components affect the expression of PmrA-regulated genes via PmrA and independently from PmrB and that EINtr and NPr are part of the same cascade and require their conserved histidine residues in order to function. Furthermore, expression of the Legionella micdadei EIINtr component in L. pneumophila resulted in a reduction in the levels of expression of PmrA-regulated genes which was completely dependent on the L. pneumophila PTS components and the L. micdadei EIINtr conserved histidine residue. Moreover, reconstruction of the L. pneumophila PTS in vitro indicated that EINtr is phosphorylated by phosphoenolpyruvate (PEP) and transfers its phosphate to NPr. Our results demonstrate that the L. pneumophila incomplete PTSNtr is functional and involved in the expression of effector-encoding genes regulated by PmrA.


Subject(s)
Bacterial Proteins/genetics , Legionella pneumophila/genetics , Legionella pneumophila/pathogenicity , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Humans , Legionella pneumophila/enzymology , Legionnaires' Disease/microbiology , Macrophages/microbiology , Phosphorylation
6.
J Vis Exp ; (112)2016 06 04.
Article in English | MEDLINE | ID: mdl-27341521

ABSTRACT

Analysis of the transcriptome of bacterial pathogens during mammalian infection is a valuable tool for studying genes and factors that mediate infection. However, isolating bacterial RNA from infected cells or tissues is a challenging task, since mammalian RNA mostly dominates the lysates of infected cells. Here we describe an optimized method for RNA isolation of Listeria monocytogenes bacteria growing within bone marrow derived macrophage cells. Upon infection, cells are mildly lysed and rapidly filtered to discard most of the host proteins and RNA, while retaining intact bacteria. Next, bacterial RNA is isolated using hot phenol-SDS extraction followed by DNase treatment. The extracted RNA is suitable for gene transcription analysis by multiple techniques. This method is successfully employed in our studies of Listeria monocytogenes gene regulation during infection of macrophage cells (1-4). The protocol can be easily modified to study other bacterial pathogens and cell types.


Subject(s)
Macrophages , Animals , Gene Expression Regulation , Listeria monocytogenes , RNA, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...