Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38391893

ABSTRACT

"Hot spot" 19F magnetic resonance imaging (MRI) has garnered significant attention recently for its ability to image various disease markers quantitatively. Unlike conventional gadolinium-based MRI contrast agents, which rely on proton signal modulation, 19F-MRI's direct detection has a unique advantage in vivo, as the human body exhibits a negligible background 19F-signal. However, existing perfluorocarbon (PFC) or PFC-based contrast materials suffer from several limitations, including low longitudinal relaxation rates and relatively low imaging efficiency. Hence, we designed a macromolecular contrast agent featuring a high number of magnetically equivalent 19F-nuclei in a single macromolecule, adequate fluorine nucleus mobility, and excellent water solubility. This design utilizes superfluorinated polyphosphazene (PPz) polymers as the 19F-source; these are modified with sodium mercaptoethanesulfonate (MESNa) to achieve water solubility exceeding 360 mg/mL, which is a similar solubility to that of sodium chloride. We observed substantial signal enhancement in MRI with these novel macromolecular carriers compared to non-enhanced surroundings and aqueous trifluoroacetic acid (TFA) used as a positive control. In conclusion, these novel water-soluble macromolecular carriers represent a promising platform for future MRI contrast agents.

2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769197

ABSTRACT

Lead (Pb) is a highly toxic heavy metal that has deleterious effects on the central nervous system. This study aimed to investigate the effects of salinomycin (Sal) and deferiprone (DFP) on brain morphology and on the content of some essential elements in Pb-exposed mice. Adult male Institute of Cancer Research (ICR) mice were exposed to a daily dose of 80 mg/kg body weight ( b.w.) Pb(II) nitrate for 14 days and subsequently treated with Sal (16 mg/kg b.w.) or DFP (19 mg/kg b.w.) for another 14 days. At the end of the experimental protocol, the brains were processed for histological and inductively coupled plasma mass spectrometry (ICP-MS) analyses. Pb exposure resulted in a 50-fold increase in Pb concentration, compared with controls. Magnesium (Mg) and phosphorus (P) were also significantly increased by 22.22% and 17.92%, respectively. The histological analysis of Pb-exposed mice revealed brain pathological changes with features of neuronal necrosis. Brain Pb level remained significantly elevated in Sal- and DFP-administered groups (37-fold and 50-fold, respectively), compared with untreated controls. Treatment with Sal significantly reduced Mg and P concentrations by 22.56% and 18.38%, respectively, compared with the Pb-exposed group. Administration of Sal and DFP ameliorated brain injury in Pb-exposed mice and improved histological features. The results suggest the potential application of Sal and DFP for treatment of Pb-induced neurotoxicity.


Subject(s)
Lead , Pyrans , Male , Mice , Animals , Deferiprone , Lead/toxicity , Pyrans/pharmacology , Brain
3.
Pharmaceutics ; 14(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365139

ABSTRACT

Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues and organs, the theranostic probe offers targeted diagnostic imaging and therapy simultaneously. METHODS: Novel salinomycin (Sal)-based theranostic probes comprising two different paramagnetic metal ions, gadolinium(III) (Gd(III)) or manganese(II) (Mn(II)), as signal emitting motifs for MRI were synthesized and characterized by elemental analysis, infrared spectral analysis (IR), electroparamagnetic resonance (EPR), thermogravimetry (TG) differential scanning calorimetry (DSC) and electrospray ionization mass spectrometry (ESI-MS). To overcome the water insolubility of the two Sal-complexes, they were loaded into empty bacterial ghosts (BGs) cells as transport devices. The potential of the free and BGs-loaded metal complexes as theranostics was evaluated by in vitro relaxivity measurements in a high-field MR scanner and in cell culture studies. RESULTS: Both the free Sal-complexes (Gd(III) salinomycinate (Sal-Gd(III) and Mn(II) salinomycinate (Sal-Mn(II)) and loaded into BGs demonstrated enhanced cytotoxic efficacy against three human tumor cell lines (A549, SW480, CH1/PA-1) relative to the free salinomycinic acid (Sal-H) and its sodium complex (Sal-Na) applied as controls with IC50 in a submicromolar concentration range. Moreover, Sal-H, Sal-Gd(III), and Sal-Mn(II) were able to induce perturbations in the cell cycle of treated colorectal and breast human cancer cell lines (SW480 and MCF-7, respectively). The relaxivity (r1) values of both complexes as well as of the loaded BGs, were higher or comparable to the relaxivity values of the clinically applied contrast agents gadopentetate dimeglumine and gadoteridol. CONCLUSION: This research is the first assessment that demonstrates the potential of Gd(III) and Mn(II) complexes of Sal as theranostic agents for MRI. Due to the remarkable selectivity and mode of action of Sal as part of the compounds, they could revolutionize cancer therapy and allow for early diagnosis and monitoring of therapeutic follow-up.

4.
J Trace Elem Med Biol ; 74: 127062, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35985070

ABSTRACT

INTRODUCTION: Cadmium (Cd) is а hazardous multi-organ toxin. In this study, we provide the first results about the effect of oral administration of deferiprone (DFP) on Cd accumulation and on the homeostasis of essential elements in the brain of Cd-exposed mice. METHODS: Adult Institute of Cancer Research (ICR) male mice were randomized into four experimental groups: untreated controls - administered distilled water for 28 days; Cd-exposed group - exposed to 18 mg/kg body weight (b.w.) Cd(II) acetate for 14 days followed by the administration of distilled water for two weeks; Cd + DFP (low dose) - Cd-intoxicated mice subsequently treated with 19 mg/kg b.w. DFP for two weeks; and Cd + DFP (high dose) - Cd-exposed mice administered high-dose DFP (135 mg/kg b.w.) for 14 days. Brains were subjected to inductively coupled plasma-mass spectrometry (ICP-MS) and histological analysis. RESULTS: The results revealed that exposure of mice to Cd for 14 days significantly increased Cd concentration and significantly decreased magnesium (Mg), phosphorus (P), and zinc (Zn) contents in the brain compared to untreated controls. This effect was accompanied by necrotic-degenerative changes in both the cerebrum and cerebellum. Oral administration of low-dose DFP to Cd-exposed mice decreased the concentration of the toxic metal in the brain by 16.37% and restored the concentration of the essential elements to normal control values. Histological analysis revealed substantially improved cerebral and cerebellar histoarchitectures. In contrast, oral administration of high-dose DFP increased Cd content and significantly decreased selenium (Se) concentration in the brain. Necrotic neurons and Purkinje cells were still observed in the cerebral and cerebellar cortices. CONCLUSION: The results demonstrated that oral administration of DFP at low doses has a better therapeutic potential for the treatment of Cd-induced brain damage compared to high doses.


Subject(s)
Drinking Water , Selenium , Animals , Male , Mice , Acetates/pharmacology , Brain , Cadmium , Deferiprone/pharmacology , Homeostasis , Magnesium/pharmacology , Phosphorus , Selenium/pharmacology , Zinc/pharmacology
5.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457186

ABSTRACT

Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)-untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)-mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group-Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group-Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.


Subject(s)
Drinking Water , Lead , Animals , Chelating Agents , Deferiprone/pharmacology , Homeostasis , Lead/toxicity , Male , Mice , Pyrans
6.
J Inorg Biochem ; 222: 111495, 2021 09.
Article in English | MEDLINE | ID: mdl-34098348

ABSTRACT

Amino-dextrans (AD) conjugated with gadolinium (Gd3+) were developed as neuro-specific contrast agents (CA) for the visualization of the sciatic nerve in rats by magnetic resonance imaging (MRI). AD with 3, 10, and 70 kDa molecular weights were assessed as carrier molecules known to be transported with various speed by axonal microtubules. Detailed spectroscopic characterizations, analyses by Fast Protein Liquid Chromatography (FPLC), Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), and inductively coupled plasma-mass spectrometry (ICP-MS), were carried out. For MRI, the paramagnetic Gd3+ ion was coupled as a T1 signal enhancer. The well-established linear chelator, diethylenetriaminepentaacetic acid (DTPA), was used and subsequently replaced by the more stable cyclic chelator 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In addition, a fluorescently labeled AD-DTPA-Gd was prepared to demonstrate an active transport to the spinal cord by histochemistry. After successful synthesis and characterization, molecular migration of the AD-DTPA-Gd in the sciatic nerve of healthy Sprague Dawley rats was monitored by MRI for up to seven days. Enhancement of nerve structures was evaluated by MRI and correlated with ICP-MS analyses. To investigate the distribution of CA along the neuraxis, all animals were sacrificed after the final MRI monitoring. Nerves, spinal ganglions, and corresponding spinal cord sections were harvested, to determine the localization and concentration of the paramagnetic element. This is the first report that demonstrates the active uptake and transport of AD-Gd conjugates within the sciatic nerve. This new concept may serve as a potential diagnostic tool for the direct visualization and monitoring of the continuity of injured nerves.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Dextrans/chemistry , Drug Carriers/chemistry , Peripheral Nervous System Diseases/diagnostic imaging , Sciatic Nerve/diagnostic imaging , Animals , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Gadolinium/chemistry , Magnetic Resonance Imaging , Male , Rats, Sprague-Dawley
7.
Environ Sci Pollut Res Int ; 28(6): 6784-6795, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33006102

ABSTRACT

In this study, we compare the effects of deferiprone (Def) and tetraethylammonium salt of salinomycinic acid (Sal) on lead (Pb)-induced toxicity in testes of Pb-exposed mice. Mature male ICR mice were allocated into four groups as follows: untreated control mice (ctrl)-received distilled water for 4 weeks; Pb-exposed mice (Pb)-subjected to 14-day Pb (II) nitrate administration at dose 80 mg/kg body weight (b.w.); Pb + Def group-Pb-exposed mice, treated with 20 mg/kg b.w. Def for 2 weeks; and Pb + Sal group-Pb-intoxicated mice, treated with 16 mg/kg b.w. Sal for 14 days. The results demonstrated that Pb exposure significantly increased blood and testicular Pb concentrations, decreased testicular calcium (Ca) content, significantly elevated testicular levels of magnesium (Mg), zinc (Zn), and selenium (Se) but did not significantly affect the endogenous contents of phosphorous (P) and iron (Fe) compared with untreated controls. Pb intoxication induced disorganization of the seminiferous epithelium. Def or Sal administration reduced blood Pb and testicular Pb concentrations in Pb-exposed mice compared with the Pb-intoxicated group. Mg, Zn, and Se concentrations in testes of Pb-exposed mice, treated with Def or Sal, remained higher compared with the untreated controls. Sal significantly increased testicular P concentration compared with untreated controls and significantly elevated the testicular Ca and Fe concentrations compared with the toxic control group. Both chelating agents improved testicular morphology to a great extent. The results demonstrate the potential of both compounds as antidotes for treatment of Pb-induced impairment of male reproductive function.


Subject(s)
Lead , Testis , Animals , Deferiprone , Lead/toxicity , Male , Mice , Mice, Inbred ICR , Tetraethylammonium
8.
Front Med (Lausanne) ; 7: 613138, 2020.
Article in English | MEDLINE | ID: mdl-33363189

ABSTRACT

Introduction: Current imaging modalities for peripheral nerves display the nerve's structure but not its function. Based on a nerve's capacity for axonal transport, it may be visualized by targeted application of a contrast agent and assessing the distribution through radiological imaging, thus revealing a nerve's continuity. This concept has not been explored, however, may potentially guide the treatment of peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging through MRI after administering gadolinium-based contrast agents which were then retrogradely transported. Methods: We synthesized MRI contrast agents consisting of paramagnetic agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled with one of the contrast agents to achieve retrograde distribution along the nerve. One week after surgery, the spinal cords and sciatic nerves were harvested to visualize the distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following radiological imaging, the concentration of gadolinium in the harvested samples was analyzed using inductively coupled mass spectrometry (ICP-MS). Results: All contrast agents demonstrated high relaxivity values, varying between 12.1 and 116.0 mM-1s-1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI. In vivo measurements revealed significant signal enhancement in the sciatic nerve on the 3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application. Chemical evaluation showed high gadolinium concentration in the sciatic nerve for HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg). Discussion: In this study a novel imaging approach for the evaluation of a peripheral nerve's integrity was implemented. The findings provide radiological and chemical evidence of successful contrast agent uptake along the sciatic nerve and its distribution within the spinal canal in rats. This novel concept may assist in the diagnostic process of peripheral nerve injuries in the future.

9.
Oncoimmunology ; 7(5): e1424676, 2018.
Article in English | MEDLINE | ID: mdl-29721389

ABSTRACT

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality worldwide. At late stage of the disease CRC often shows (multiple) metastatic lesions in the peritoneal cavity which cannot be efficiently targeted by systemic chemotherapy. This is one major factor contributing to poor prognosis. Oxaliplatin is one of the most commonly used systemic treatment options for advanced CRC. However, drug resistance - often due to insufficient drug delivery - is still hampering successful treatment. The anticancer activity of oxaliplatin includes besides DNA damage also a strong immunogenic component. Consequently, the aim of this study was to investigate the effect of bacterial ghosts (BGs) as adjuvant immunostimulant on oxaliplatin efficacy. BGs are empty envelopes of gram-negative bacteria with a distinct immune-stimulatory potential. Indeed, we were able to show that the combination of BGs with oxaliplatin treatment had strong synergistic anticancer activity against the CT26 allograft, resulting in prolonged survival and even a complete remission in this murine model of CRC carcinomatosis. This synergistic effect was based on an enhanced induction of immunogenic cell death and activation of an efficient T-cell response leading to long-term anti-tumor memory effects. Taken together, co-application of BGs strengthens the immunogenic component of the oxaliplatin anticancer response and thus represents a promising natural immune-adjuvant to chemotherapy in advanced CRC.

10.
Curr Drug Deliv ; 15(1): 134-142, 2018.
Article in English | MEDLINE | ID: mdl-28000552

ABSTRACT

BACKGROUND: Lipiodol (iodized poppy seed oil) accumulates predominately in the tumor rather than in the liver tissue [1, 2]. Therefore, mixing anticancer drugs with Lipiodol may enhance the antitumor effect by increasing the local drug concentration. OBJECTIVE: In this pilot study, we made use of Lipiodol as a potential carrier of three promising antitumor metal complexes (tris(8-quinolato)gallium(III) (KP46), tetrachlorobis(indazole)ruthenate(III) (KP1019) and the hydrolysis product of KP1019, mer,trans-[RuCl3(H2O)(Hind)2]. METHODS: The stability of the drugs in Lipiodol and the release profile into the aqueous phase were examined independently by three different analytical techniques (high pressure liquid chromatography, HPLC; atom absorption spectroscopy, AAS; and electron spray ionization mass spectrometry, ESI-MS). RESULTS: The complexes were stable and remained in the Lipiodol emulsion over 3 days. In contrast to KP1019 and KP46, evaluation of Lipiodol emulsions of mer,trans-[RuCl3 (H2O) (Hind) 2] was not possible due to the insolubility of the compound in Lipiodol. KP1019 released rapidly into the aqueous phase in the first week and after 1 month it was not possible to detect the complex in the emulsion. KP46 showed a gradual release with the time resulting in the release of about 6.4 % of KP46 into the aqueous phase after 1 month of incubation. CONCLUSION: The initial results show that Lipiodol can be successfully employed as a carrier of anticancer Ru- or Ga-complexes. Furthermore, advantages can overcome the poor water solubility of the metal complexes, opening new perspectives for the use of Lipiodol emulsions in molecular imaging and cancer therapy as theragnostic agents.


Subject(s)
Antineoplastic Agents/chemistry , Ethiodized Oil/chemistry , Indazoles/chemistry , Organometallic Compounds/chemistry , Oxyquinoline/analogs & derivatives , Chromatography, High Pressure Liquid , Emulsions/chemistry , Hydrolysis , Molecular Imaging , Molecular Structure , Oxyquinoline/chemistry , Pilot Projects , Ruthenium Compounds , Solubility , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Atomic
11.
J Inorg Biochem ; 105(2): 250-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21194625

ABSTRACT

With the purpose to develop macromolecular magnetic resonance imaging contrast agents, we herein report three different synthetic approaches to the covalent attachment of bifunctional chelating agents to human serum albumin followed by coordination to contrast enhancing gadolinium(III). Applied methods cover active ester-mediated conjugation, linkage through glutaryl spacer, as well as the connection by the employment of glutaraldehyde. The content of gadolinium(III) was evaluated by inductively-coupled-plasma mass-spectrometry (ICP-MS) measurements and indicated reproducible amounts of conjugated contrast enhancing material. Small angle X-ray scattering (SAXS) experiments provided the size and altered shape of the gadolinium loaded proteins in comparison to unmodified albumin. Finally, the magnetic resonance properties of the protein conjugates were evaluated. The results indicated suitability of the gadolinium(III) loaded protein conjugates for use as macromolecular contrast agents in magnetic resonance imaging (MRI).


Subject(s)
Chelating Agents/chemistry , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Gadolinium , Serum Albumin/chemistry , Contrast Media/chemistry , Coordination Complexes/chemistry , Humans , Magnetic Resonance Imaging , Molecular Conformation , Scattering, Small Angle , X-Ray Diffraction
12.
Mol Imaging Biol ; 13(3): 432-442, 2011 06.
Article in English | MEDLINE | ID: mdl-20574850

ABSTRACT

Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Pentetic Acid/chemistry , Plant Lectins , Solanum lycopersicum/chemistry , Animals , Cattle , Chromatography, Gel , Mass Spectrometry , Plant Lectins/chemistry , Serum Albumin, Bovine/chemistry , Solubility , Water/chemistry
13.
Mol Imaging Biol ; 13(1): 16-24, 2011 02.
Article in English | MEDLINE | ID: mdl-20467820

ABSTRACT

PURPOSE: Non-specific extracellular contrast agents have been on the market for more than 15 years. Here, we report on the synthesis of new selective lectin-gadolinium (Gd)-loaded chitosan nanoparticles with a prolonged clearance time and a much higher relaxivity in comparison to other preparations. PROCEDURES: Chitosan nanoparticles were prepared from 85% deacetylated chitin by glutaraldehyde cross-linking of an aqueous acetic acid dispersion of chitosan in a mixture of n-hexane using sodium bis(ethylhexyl)sulfosuccinate as a surfactant. RESULTS: Several crucial parameters, namely, the Gd and protein content of the nanoparticles, their size and dispersity were determined. Magnetic resonance measurements were carried out by intravenous perfusion of mono-disperse suspensions of the nanoparticles into mice. CONCLUSIONS: Chitosan nanoparticles can be used as contrast agents in magnetic resonance imaging (MRI). They are excellent candidates for controlled delivery of bioactive compounds to molecular targets and as biospecific diagnostic tools in MRI.


Subject(s)
Chitosan/chemistry , Contrast Media , Gadolinium/chemistry , Hydrogels , Lectins/chemistry , Magnetic Resonance Imaging , Nanoparticles , Animals , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...