Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 865232, 2022.
Article in English | MEDLINE | ID: mdl-35493489

ABSTRACT

The typical anti-phospholipid antibodies (APLA) in the anti-phospholipid syndrome (APS) are reactive with the phospholipid-binding protein ß2GPI as well as a growing list of other protein targets. The relation of APLA to natural antibodies and the fuzzy set of autoantigens involved provoked us to study the changes in the IgM repertoire in APS. To this end, peptides selected by serum IgM from a 7-residue linear peptide phage display library (PDL) were deep sequenced. The analysis was aided by a novel formal representation of the Igome (the mimotope set reflecting the IgM specificities) in the form of a sequence graph. The study involved women with APLA and habitual abortions (n=24) compared to age-matched clinically healthy pregnant women (n=20). Their pooled Igomes (297 028 mimotope sequences) were compared also to the global public repertoire Igome of pooled donor plasma IgM (n=2 796 484) and a set of 7-mer sequences found in the J regions of human immunoglobulins (n=4 433 252). The pooled Igome was represented as a graph connecting the sequences as similar as the mimotopes of the same monoclonal antibody. The criterion was based on previously published data. In the resulting graph, identifiable clusters of vertices were considered related to the footprints of overlapping antibody cross-reactivities. A subgraph based on the clusters with a significant differential expression of APS patients' mimotopes contained predominantly specificities underrepresented in APS. The differentially expressed IgM footprints showed also an increased cross-reactivity with immunoglobulin J regions. The specificities underexpressed in APS had a higher correlation with public specificities than those overexpressed. The APS associated specificities were strongly related also to the human peptidome with 1 072 mimotope sequences found in 7 519 human proteins. These regions were characterized by low complexity. Thus, the IgM repertoire of the APS patients was found to be characterized by a significant reduction of certain public specificities found in the healthy controls with targets representing low complexity linear self-epitopes homologous to human antibody J regions.


Subject(s)
Antiphospholipid Syndrome , Antibodies, Antiphospholipid , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin M , Pregnancy , beta 2-Glycoprotein I
2.
Pharmacology ; 107(7-8): 341-350, 2022.
Article in English | MEDLINE | ID: mdl-34864734

ABSTRACT

INTRODUCTION: As has been shown previously, various protein-modifying agents can change the antigen-binding properties of immunoglobulins. However, induced polyspecificity of human secretory immunoglobulin A (sIgA) has not been previously characterized in detail. METHODS: In the present study, human secretory immunoglobulin A (IgA) was exposed to buffers with acidic pH, to free heme, or to pro-oxidative ferrous ions, and the antigen-binding behavior of the native and modified IgA to viral and bacterial antigens was compared using Western blotting and enzyme-linked immunosorbent assay. The ability of these agents to modulate the antigen-binding properties of human sIgA toward a wide range of pathogen peptides was investigated using an epitope microarray. RESULTS: We have shown that acidic pH, heme, and pro-oxidative ferrous ions influenced the binding of secretory IgA in opposite directions (either increasing or decreasing); however, the strongest effect was observed when using buffers with low pH. This fraction had the highest number of affected reactivities; most of them were increased and most of the new ones were toward common pathogens. CONCLUSIONS: Thus, it was shown that all investigated treatments can alter to some degree the antigen-binding of secretory IgA, but acidic pH has the most potentially beneficial effect by increasing binding to a largest number of common pathogens' antigens.


Subject(s)
Heme , Immunoglobulin A, Secretory , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A, Secretory/pharmacology , Ions
3.
Stem Cell Rev Rep ; 16(5): 853-875, 2020 10.
Article in English | MEDLINE | ID: mdl-32681232

ABSTRACT

Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.


Subject(s)
Cellular Microenvironment , Mesenchymal Stem Cells/cytology , Spheroids, Cellular/cytology , Animals , Cell Differentiation , Cell Survival , Epigenesis, Genetic , Humans , Mesenchymal Stem Cells/metabolism
4.
Cell Immunol ; 355: 104151, 2020 09.
Article in English | MEDLINE | ID: mdl-32615414

ABSTRACT

B cells with regulatory properties (Bregs) were identified in human and in mice among different B-cell subsets. Their regulatory properties rely mainly on the production of anti-inflammatory cytokines, in particular IL10, IL-35 and TGFß, and were extensively studied in mouse models of autoimmune and inflammatory diseases. However, the exact nature of the stimulatory signals conferring regulatory properties to B cells is still not clear. We serendipitously observed that fluorescein isothiocyanate (FITC) binds to a significant proportion of naïve mouse B cells. Binding of FITC to the B-cell surface implicated at least in part the B-cell receptor. It triggered IL-10 production and allowed the endocytosis of FITC-coupled antigens followed by their presentation to CD4+ T cells. In particular, B cells incubated with FITC-OVA polarized OTII T cells towards a Tr1/Th2 phenotype in vitro. Further, the adoptive transfer of B cells incubated with FITC-labeled myelin oligodendrocyte glycoprotein peptide protected mice from experimental autoimmune encephalomyelitis, a T-cell-dependent autoimmune model. Together, the data show that FITC-stimulated B cells polarize immune responses towards Tr1/Th2 and acquire immuno-modulatory properties.


Subject(s)
B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , B-Lymphocytes, Regulatory/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Fluorescein/metabolism , Fluorescein/pharmacology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukins/immunology , Interleukins/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism
5.
Front Immunol ; 10: 2796, 2019.
Article in English | MEDLINE | ID: mdl-31849974

ABSTRACT

Specific antibody reactivities are routinely used as biomarkers, but the antibody repertoire reactivity (igome) profiles are still neglected. Here, we propose rationally designed peptide arrays as efficient probes for these system level biomarkers. Most IgM antibodies are characterized by few somatic mutations, polyspecificity, and physiological autoreactivity with housekeeping function. Previously, probing this repertoire with a set of immunodominant self-proteins provided a coarse analysis of the respective repertoire profiles. In contrast, here, we describe the generation of a peptide mimotope library that reflects the common IgM repertoire of 10,000 healthy donors. In addition, an appropriately sized subset of this quasi-complete mimotope library was further designed as a potential diagnostic tool. A 7-mer random peptide phage display library was panned on pooled human IgM. Next-generation sequencing of the selected phage yielded 224,087 sequences, which clustered in 790 sequence clusters. A set of 594 mimotopes, representative of the most significant sequence clusters, was shown to probe symmetrically the space of IgM reactivities in patients' sera. This set of mimotopes can be easily scaled including a greater proportion of the mimotope library. The trade-off between the array size and the resolution can be explored while preserving the symmetric sampling of the mimotope sequence and reactivity spaces. BLAST search of the non-redundant protein database with the mimotopes sequences yielded significantly more immunoglobulin J region hits than random peptides, indicating a considerable idiotypic connectivity of the targeted igome. The proof of principle predictors for random diagnoses was represented by profiles of mimotopes. The number of potential reactivity profiles that can be extracted from this library is estimated at more than 1070. Thus, a quasi-complete IgM mimotope library and a scalable representative subset thereof are found to address very efficiently the dynamic diversity of the human public IgM repertoire, providing informationally dense and structurally interpretable IgM reactivity profiles.


Subject(s)
Immunoglobulin M , Peptide Library , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/blood , Neoplasms/immunology
6.
Hum Vaccin Immunother ; 13(2): 314-322, 2017 02.
Article in English | MEDLINE | ID: mdl-27929733

ABSTRACT

Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are proven to be epitopes driving the antibody synthesis. Here, the advantages and disadvantages of the major profiling techniques as well as their current and future application in disease prediction and vaccination are discussed.


Subject(s)
Antibodies/blood , High-Throughput Nucleotide Sequencing/methods , Peptide Library , Protein Array Analysis/methods , Animals , Humans
7.
Front Biosci (Landmark Ed) ; 18(2): 543-63, 2013 01 01.
Article in English | MEDLINE | ID: mdl-23276941

ABSTRACT

Ovarian cancer is characterized by the highest mortality rate among gynecologic malignancies. Therefore, there is a growing need for innovative therapies and techniques for monitoring and prevention of this disease. The exact cause of most ovarian tumors usually remains unknown. Ovarian cancer is believed to be caused by a range of different variables. This review is an attempt to summarize some genetic factors involved in the disruption of certain signaling pathways responsible for ovarian tumor transformation and development. Those factors considerably contribute to accurate diagnostics, treatment and prognosis in ovarian cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , Ovarian Neoplasms/genetics , Precancerous Conditions/genetics , Female , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Genes, p53/physiology , Humans , Prognosis , Signal Transduction/genetics
8.
Autoimmun Rev ; 12(6): 653-6, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23201921

ABSTRACT

Intravenous immunoglobulin preparations (IVIg) that have undergone a mild oxidizing treatment with ferrous ions have an increased polyspecificity, which is not associated with a higher propensity to form aggregates. Among other biological properties of the modified IVIg, a protective effect in LPS sepsis model stands out as the native preparation is totally devoid of it or even exacerbates sepsis. A recent finding identified an LPS induced subset of B1 lymphocytes that migrate from the peritoneal cavity to the spleen acquiring the expression of CD93, GM-CSF as well as the capacity to control sepsis. This report demonstrates that modified IVIg, but not the native preparation, causes a further increase in this population during LPS sepsis. Partial targeted suppression of the peritoneal B cell proliferation by an intracellular dye abrogates this effect and the clinical benefit of modified IVIg.


Subject(s)
B-Lymphocytes/drug effects , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Sepsis/drug therapy , Animals , B-Lymphocytes/immunology , Cells, Cultured , Immunoglobulins, Intravenous/chemistry , Immunoglobulins, Intravenous/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Iron/chemistry , Lipopolysaccharides , Mice , Mice, Inbred ICR , Peritoneal Cavity/cytology , Sepsis/chemically induced , Sepsis/immunology
9.
Am J Reprod Immunol ; 68(6): 451-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22531009

ABSTRACT

It is currently accepted that the Sertoli cells are proliferatively active only during the embryogenesis and early fetal development, seizing to divide after puberty, when the spermatogenic niche is prepared, and they become terminally differentiated. So far, only seasonal breeders from mammals have been reported as having season-dependent variations in adult Sertoli cells number and proliferation activity. In this review, we will try to shed light on testis somatic cell plasticity and discuss new evidence for some unique proliferative features Sertoli cells harbor.


Subject(s)
Sertoli Cells/physiology , Testis/cytology , Animals , Cell Cycle , Cell Differentiation , Cell Proliferation , Humans , Male , Mice , Rats , Sertoli Cells/metabolism , Spermatogenesis , Testis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...