Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Type of study
Language
Publication year range
1.
Braz J Med Biol Res ; 43(12): 1193-202, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21140097

ABSTRACT

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker's yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker's yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 µmol/kg, respectively, 4 h after yeast injection) attenuated baker's yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker's yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker's yeast-induced increases of IL-1ß or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.


Subject(s)
Antioxidants/pharmacology , Antipyretics/pharmacology , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Animals , Antipyretics/chemistry , Cyclooxygenase 1/pharmacology , Cyclooxygenase 2/pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Male , Pyrazoles/chemistry , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
2.
Braz. j. med. biol. res ; 43(12): 1193-1202, Dec. 2010. ilus
Article in English | LILACS | ID: lil-569003

ABSTRACT

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5 percent Tween 80 in 0.9 percent NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82 percent, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42 percent reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.


Subject(s)
Animals , Male , Rats , Antioxidants/pharmacology , Antipyretics/pharmacology , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Antipyretics/chemistry , Cyclooxygenase 1/pharmacology , /pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Pyrazoles/chemistry , Rats, Wistar , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
3.
Brain Res ; 1051(1-2): 66-71, 2005 Jul 27.
Article in English | MEDLINE | ID: mdl-15992781

ABSTRACT

In this study we investigated whether succinate, the accumulating substrate in succinate dehydrogenase (SDH) deficiencies and SDH inhibitor intoxication, causes lipoperoxidation and protein carbonylation, and if NMDA receptors are involved in the succinate-induced oxidative damage. Adult male mice (30-40 g) received an intracerebroventricular injection of succinic acid (0.7, 1.0 and 1.7 micromol/5 microl) or 0.9% NaCl (5 microl) and had their exploratory behavior assessed in an open field for 10 min. Succinate (0.7 and 1.0 micromol/5 microl) decreased locomotor activity behavior and increased thiobarbituric acid reactive substances (TBARS) and protein carbonylation in the forebrain. Conversely, 1.7 micromol of succinate did not alter locomotor activity or oxidative damage parameters. The involvement of NMDA receptors in the succinate-induced increase of total protein carbonylation content and exploratory behavior inhibition was assessed by co-administrating MK-801 (7 nmol/2.5 microl icv), a noncompetitive NMDA receptor antagonist, with succinate (1 micromol/2.5 microl icv). The co-administration of MK-801 protected against succinate-induced increase of total protein carbonylation and decrease of locomotor activity. These results suggest the involvement of NMDA receptors in these effects of succinate, which may of particular relevance for succinate-accumulating conditions, such as SDH inhibitors intoxication and inherited SDH deficiencies.


Subject(s)
Exploratory Behavior/drug effects , Oxidative Stress/drug effects , Prosencephalon/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Succinic Acid/adverse effects , Animals , Dose-Response Relationship, Drug , Exploratory Behavior/physiology , Injections, Intraventricular , Lipid Peroxidation/drug effects , Male , Mice , Oxidative Stress/physiology , Prosencephalon/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Succinic Acid/administration & dosage , Thiobarbituric Acid Reactive Substances/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...