Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
medRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853861

ABSTRACT

Introduction: Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for Tuberculosis Preventive Therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs. Our study aims to describe the pharmacokinetic and pharmacogenomics of 3HP used for TPT, the ADRs and their association with completion rates, and TPT outcomes, providing vital insights for TB control strategies in resource-limited settings. Methods: This is an observational cohort study with a nested case-control study. We enrolled consecutive patients initiated on TPT using the 3HP regimen. These are followed up bi-weekly and then monthly during the active phase of treatment and 3 monthly for 2 years following completion of TPT. ADR evaluation includes clinical assessment and liver function tests. Cases are selected from those who experience ADRs, and controls from those who do not. Serum isoniazid and rifapentine concentrations are measured and pharmacogenomic analysis for NAT2 and CYP2E1 polymorphisms are done. Participants are followed up for 2 years to determine TPT outcomes. Analysis: The safety profile of 3HP will be assessed using descriptive statistics, including proportions of patients experiencing ADRs and grade 3 or above events related to treatment. Chi-square tests and regression models will determine predictors of ADRs and their impact on treatment completion. Pharmacokinetic-pharmacodynamic modeling will establish population parameters and factors influencing rifapentine and isoniazid concentrations.

2.
Infect Dis (Lond) ; : 1-17, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743051

ABSTRACT

BACKGROUND: The disproportionate burden of viral hepatitis, particularly hepatitis B virus (HBV) is experienced by people living in low-resourced sub-Saharan Africa, where the estimated prevalence is 3-7 times the global average. Therefore to inform policy, we describe the seroprevalence and trends of hepatitis C (HCV) and HBV biomarkers: anti-HCV antibody and hepatitis B surface antigen (HBsAg), respectively, in Zimbabwe. METHODS: We analysed data from 181,248 consecutive blood-donors, examined between January 2015 through December 2018. Additionally, we conducted a comprehensive literature review using PubMed and African Journals Online databases, meta-analysing selected papers from Zimbabwe, published between 1970 and 2020, that met specific criteria. RESULTS: Overall age-standardized prevalence rate (ASPR) for anti-HCV was 8.67 (95%CI, 0.25-17.09) per 100,000, while that for HBsAg was 2.26 (95%, 1.89-2.63) per 1000 blood-donors, per year. Meta-analysis of 9 studies comprising 220,127 persons tested for anti-HCV revealed ASPR of 0.05% (95% 0%-0.19%) in blood-donors and 1.78% (95%CI, 0.01%-5.55%) in the general population, for an overall pooled ASPR of 0.44 (95%CI, 0.19%-0.76%). 21 studies comprising 291,784 persons tested for HBsAg revealed ASPR of 0.65% (95%CI, 0.31%-1.00%) in blood-donors and 4.31% (95%CI, 1.77%-6.50%) in the general population for an overall pooled ASPR of 4.02% (95%CI, 3.55%-4.48%), after HBV vaccine introduction. HBsAg prevalence was significantly higher before HBV vaccine introductions. CONCLUSIONS: The prevalence of HBV is decreasing, consistent with the introduction of HBV vaccination, while HCV prevalence is increasing in Zimbabwe. This highlights the need for Improved blood-donor screening and more informative biomarker studies, particularly among repeat donors and children.

3.
Int J Antimicrob Agents ; 62(1): 106847, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187338

ABSTRACT

BACKGROUND: Guideline-based therapy (GBT) for pulmonary Mycobacterium abscessus (Mab) disease achieves sustained sputum culture conversion (SSCC) rates of 30%; this is reflected by poor efficacy of GBT in the hollow fiber system model of Mab (HFS-Mab), which killed ∼1.22 log10 CFU/mL. This study was performed to determine which clinical dose of omadacycline, a tetracycline antibiotic, should be used in combination therapy to treat pulmonary Mab disease for relapse-free cure. METHODS: First, omadacycline intrapulmonary concentration-time profiles of seven daily doses were mimicked in the HFS-Mab model and exposures associated with optimal efficacy were identified. Second, 10,000 subject Monte-Carlo simulations were performed to determine whether oral omadacycline 300 mg/day achieved these optimal exposures. Third, a retrospective clinical study on omadacycline vs. primarily tigecycline-based salvage therapy was conducted to assess rates of SSCC and toxicity. Fourth, a single patient was recruited to validate the findings. RESULTS: Omadacycline efficacy in the HFS-Mab was 2.09 log10 CFU/mL at exposures achieved in >99% of patients on 300 mg/day omadacycline. In the retrospective study of omadacycline 300 mg/day-based combinations vs. comparators, SSCC was achieved in 8/10 vs. 1/9 (P=0.006), symptom improvement in 8/8 vs. 5/9 (P=0.033), toxicity in 0 vs. 9/9 (P<0.001), and therapy discontinuation due to toxicity in 0 vs. 3/9 (P<0.001) cases, respectively. In one prospectively recruited patient, omadacycline 300 mg/day salvage therapy achieved SSCC and symptom-resolution in 3 months. CONCLUSION: Based on the preclinical and clinical data, omadacycline 300 mg/day in combination regimens could be appropriate for testing in Phase III trials in patients with Mab pulmonary disease.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Tetracyclines/therapeutic use , Tetracyclines/pharmacology , Mycobacterium Infections, Nontuberculous/drug therapy , Lung Diseases/drug therapy , Microbial Sensitivity Tests
4.
Antimicrob Agents Chemother ; 67(4): e0140122, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36877034

ABSTRACT

Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.


Subject(s)
Antitubercular Agents , Monte Carlo Method , Pharmacokinetics , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Models, Animal
5.
J Antimicrob Chemother ; 78(4): 953-964, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36794692

ABSTRACT

BACKGROUND: The hollow-fibre system model of tuberculosis (HFS-TB) has been endorsed by regulators; however, application of HFS-TB requires a thorough understanding of intra- and inter-team variability, statistical power and quality controls. METHODS: Three teams evaluated regimens matching those in the Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) study, plus two high-dose rifampicin/pyrazinamide/moxifloxacin regimens, administered daily for up to 28 or 56 days against Mycobacterium tuberculosis (Mtb) under log-phase growth, intracellular growth or semidormant growth under acidic conditions. Target inoculum and pharmacokinetic parameters were pre-specified, and the accuracy and bias at achieving these calculated using percent coefficient of variation (%CV) at each sampling point and two-way analysis of variance (ANOVA). RESULTS: A total of 10 530 individual drug concentrations, and 1026 individual cfu counts were measured. The accuracy in achieving intended inoculum was >98%, and >88% for pharmacokinetic exposures. The 95% CI for the bias crossed zero in all cases. ANOVA revealed that the team effect accounted for <1% of variation in log10 cfu/mL at each timepoint. The %CV in kill slopes for each regimen and different Mtb metabolic populations was 5.10% (95% CI: 3.36%-6.85%). All REMoxTB arms exhibited nearly identical kill slopes whereas high dose regimens were 33% faster. Sample size analysis revealed that at least three replicate HFS-TB units are needed to identify >20% difference in slope, with a power of >99%. CONCLUSIONS: HFS-TB is a highly tractable tool for choosing combination regimens with little variability between teams, and between replicates.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacokinetics , Moxifloxacin/pharmacology , Reproducibility of Results , Models, Biological , Tuberculosis/drug therapy , Tuberculosis/microbiology , Drug Therapy, Combination
6.
Article in English | MEDLINE | ID: mdl-33558291

ABSTRACT

Standard therapy [isoniazid, rifampin, ethambutol], with or without a macrolide, for pulmonary Mycobacterium kansasii lasts more than a year. Therefore, shorter treatment duration regimens are required. We used data from 32 Taiwanese patients treated with standard therapy who were followed using repetitive sampling-based sputum Mkn time-to-positivity in liquid cultures to calculate kill slopes [γ] based on ordinary differential equations and time-to-extinction of each patient's bacterial burden. The γ was 0.18 [95% Confidence Interval (CI): 0.16-0.20] log10 CFU/mL/day on standard therapy. Next, we identified Mkn time-to-extinction in the hollow fiber system model of pulmonary M. kansasii disease [HFS-Mkn] treated with standard therapy, which was a γ of 0.60 [95% CI: 0.45-0.69) log10 CFU/mL/day. The γs and time-to-extinctions between the two datasets formed structure-preserving maps based on category theory: thus, we could map them from one to the other using morphisms. This mapping identified a multistep non-linear transformation-factor for time-to-extinction from HFS-Mkn to patients. Next, a head-to-head study in the HFS-Mkn identified median time-to-extinction for standard therapy of 38.7 [95% CI: 29.1-53.2) days, isoniazid-rifampin-ethambutol-moxifloxacin of 21.7 [95% CI: 19.1-25) days, isoniazid-rifampin-moxifloxacin of 22 [96% CI: 20.1-24.5) days, and rifampin-moxifloxacin-tedizolid of 20.7 [95% CI:18.5-29) days. Our transformation-factor based translation predicted the proportion of patients of 90.7 [88.74-92.35)% achieving cure with standard therapy at 12 months, and 6-months cure rates of 99.8 [95% CI: 99.27-99.95)% for isoniazid-rifampin-ethambutol-moxifloxacin, 92.2 [90.37-93.71)% for isoniazid-rifampin-moxifloxacin, and 99.9 [99.44-99.99)% for rifampin-moxifloxacin-tedizolid. Thus, rifampin-moxifloxacin-tedizolid and isoniazid-rifampin-ethambutol-moxifloxacin are predicted to be short-course chemotherapy regimens for pulmonary M. kansasii disease.

7.
Clin Infect Dis ; 76(3): 497-505, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35731948

ABSTRACT

BACKGROUND: Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS: Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS: Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS: Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION: NCT03559582.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Adult , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics , Rifampin/pharmacology , Rifampin/therapeutic use , Pyrazinamide/therapeutic use , Pyrazinamide/pharmacokinetics , Prospective Studies , Clofazimine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Microbial Sensitivity Tests
8.
Front Pharmacol ; 13: 1024608, 2022.
Article in English | MEDLINE | ID: mdl-36330086

ABSTRACT

Background: There is need for shorter duration regimens for the treatment of tuberculosis, that can treat patients regardless of multidrug resistance status (pan-tuberculosis). Methods: We combined minocycline with tedizolid, moxifloxacin, and rifampin, in the hollow fiber system model of tuberculosis and mimicked each drugs' intrapulmonary pharmacokinetics for 28 days. Minocycline-tedizolid was administered either as a once-a-week or a daily regimen. In order to explore a possible explanation for effectiveness of the once-a-week regimen, we measured systemic and intra-bacterial minocycline pharmacokinetics. Standard daily therapy (rifampin, isoniazid, pyrazinamide) was the comparator. We then calculated γ f or kill slopes for each regimen and ranked the regimens by time-to-extinction predicted in patients. Results: The steepest γ f and shortest time-to-extinction of entire bacterial population was with daily minocycline-rifampin combination. There was no difference in γ f between the minocycline-tedizolid once-a-week versus the daily therapy (p = 0.85). Standard therapy was predicted to cure 88% of patients, while minocycline-rifampin would cure 98% of patients. Minocycline concentrations fell below minimum inhibitory concentration after 2 days of once-weekly dosing schedule. The shape of minocycline intra-bacterial concentration-time curve differed from the extracellular pharmacokinetic system and lagged by several days, consistent with system hysteresis. Hysteresis explained the persistent microbial killing after hollow fiber system model of tuberculosis concentrations dropped below the minimum inhibitory concentration. Conclusion: Minocycline could form a backbone of a shorter duration once-a-week pan-tuberculosis regimen. We propose a new concept of post-antibiotic microbial killing, distinct from post-antibiotic effect. We propose system hysteresis as the basis for the novel concept of pharmacologic memory, which allows intermittent dosing.

9.
J Antimicrob Chemother ; 77(6): 1694-1705, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35257162

ABSTRACT

OBJECTIVES: The standard of care (SOC) for the treatment of pulmonary Mycobacterium avium complex (MAC) disease (clarithromycin, rifabutin, and ethambutol) achieves sustained sputum conversion rates of only 54%. Thus, new treatments should be prioritized. METHODS: We identified the omadacycline MIC against one laboratory MAC strain and calculated drug half life in solution, which we compared with measured MAC doubling times. Next, we performed an omadacycline hollow fibre system model of intracellular MAC (HFS-MAC) exposure-effect study, as well as the three-drug SOC, using pharmacokinetics achieved in patient lung lesions. Data was analysed using bacterial kill slopes (γ-slopes) and inhibitory sigmoid Emax bacterial burden versus exposure analyses. Monte Carlo experiments (MCE) were used to identify the optimal omadacycline clinical dose. RESULTS: Omadacycline concentration declined in solution with a half-life of 27.7 h versus a MAC doubling time of 16.3 h, leading to artefactually high MICs. Exposures mediating 80% of maximal effect changed up to 8-fold depending on sampling day with bacterial burden versus exposure analyses, while γ-slope-based analyses gave a single robust estimate. The highest omadacycline monotherapy γ-slope was -0.114 (95% CI: -0.141 to -0.087) (r2 = 0.98) versus -0.114 (95% CI: -0.133 to -0.094) (r2 = 0.99) with the SOC. MCEs demonstrated that 450 mg of omadacycline given orally on the first 2 days followed by 300 mg daily would achieve the AUC0-24 target of 39.67 mg·h/L. CONCLUSIONS: Omadacycline may be a potential treatment option for pulmonary MAC, possibly as a back-bone treatment for a new MAC regimen and warrants future study in treatment of this disease.


Subject(s)
Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Anti-Bacterial Agents/pharmacology , Clarithromycin/pharmacology , Drug Therapy, Combination , Ethambutol/pharmacokinetics , Humans , Lung , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Tetracyclines
10.
J Glob Antimicrob Resist ; 28: 71-77, 2022 03.
Article in English | MEDLINE | ID: mdl-34933140

ABSTRACT

OBJECTIVES: The aim of this study was to determine and compare the efficacy of drugs to treat Mycobacterium kansasii (Mkn) pulmonary disease by performing minimum inhibitory concentration (MIC) determination and time-kill studies. METHODS: We determined the MICs to 13 drugs against the Mkn standard laboratory strain ATCC 12478 and 20 clinical isolates and performed time-kill studies with 18 drugs from different classes using the standard laboratory strain of Mkn. The ß-lactam antibiotics were tested with or without the combination of the ß-lactamase inhibitor avibactam. An inhibitory sigmoid Emax model was used to describe the relationship between drug concentrations and bacterial burden. RESULTS: Among the 13 tested drugs in the MIC experiments, the lowest MIC was recorded for bedaquiline. Among the 18 drugs used in the time-kill studies, maximum kill with cefdinir, tebipenem, clarithromycin, azithromycin, moxifloxacin, levofloxacin, tedizolid, bedaquiline, pretomanid and telacebac was greater than that for some of the drugs (isoniazid, rifampicin and ethambutol) used in standard combination therapy. CONCLUSION: We report preclinical data on the efficacy and potency of drugs that can potentially be repurposed to create a safe, effective and likely shorter-duration regimen for the treatment of Mkn pulmonary disease.


Subject(s)
Lung Diseases , Mycobacterium kansasii , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Lung Diseases/drug therapy , Lung Diseases/microbiology , Microbial Sensitivity Tests , Moxifloxacin/pharmacology
11.
Diagnostics (Basel) ; 11(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34441335

ABSTRACT

Among those who study granulomatous diseases, sarcoidosis is of tremendous interest, not only because its cause is unknown, but also because it is still as much an enigma today as it was 150 years ago when Jonathan Hutchinson first described the cutaneous form of the disease as "livid papillary psoriasis". This piece editorializes a comparative effectiveness study of methotrexate versus methylprednisolone in treatment naïve pulmonary sarcoidosis patients for CT-guided clinical responses and drug-related adverse events.

12.
Commun Biol ; 4(1): 664, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079045

ABSTRACT

There is an urgent need to discover biomarkers that are predictive of long-term TB treatment outcomes, since treatment is expense and prolonged to document relapse. We used mathematical modeling and machine learning to characterize a predictive biomarker for TB treatment outcomes. We computed bacterial kill rates, γf for fast- and γs for slow/non-replicating bacteria, using patient sputum data to determine treatment duration by computing time-to-extinction of all bacterial subpopulations. We then derived a γs-slope-based rule using first 8 weeks sputum data, that demonstrated a sensitivity of 92% and a specificity of 89% at predicting relapse-free cure for 2, 3, 4, and 6 months TB regimens. In comparison, current methods (two-month sputum culture conversion and the Extended-EBA) methods performed poorly, with sensitivities less than 34%. These biomarkers will accelerate evaluation of novel TB regimens, aid better clinical trial designs and will allow personalization of therapy duration in routine treatment programs.


Subject(s)
Bacterial Load , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Adult , Bacterial Load/statistics & numerical data , Clinical Trials as Topic , Cluster Analysis , Computer Simulation , Databases, Factual , Female , Humans , Machine Learning , Male , Middle Aged , Models, Biological , Monte Carlo Method , Recurrence , Sputum/microbiology , Time Factors , Treatment Failure , Treatment Outcome , Young Adult
14.
Front Pharmacol ; 11: 1103, 2020.
Article in English | MEDLINE | ID: mdl-32848735

ABSTRACT

BACKGROUND: The potential for hepatotoxicity during isoniazid-based tuberculosis (TB) treatment presents a major challenge for TB control programs worldwide. We sought to determine whether pharmacokinetic exposures of isoniazid and its metabolites were related to cellular oxidation/reduction status and downstream markers of oxidative DNA damage. METHODS: We performed intensive pharmacokinetic sampling among isoniazid-treated patients to determine the relative plasma exposures of isoniazid, acetylisoniazid, hydrazine, and acetylhydrazine. Physiologically-based pharmacokinetic modeling was used to estimate liver tissue exposures during a 24-h dosing interval for each compound. We experimentally treated HepG2 cells with isoniazid and metabolites at equimolar concentrations corresponding to these exposures for 7, 14, and 28-day periods, and performed assays related to redox imbalance and oxidative DNA damage at each timepoint. We related a urine marker of oxidative DNA damage to serum isoniazid pharmacokinetic exposures and pharmacogenetics in a clinical study. RESULTS: Among isoniazid-treated patients, serum concentrations of hydrazine and isoniazid concentrations were highly correlated. At equimolar concentrations that approximated hepatic tissue exposures during a 24-h dosing interval, hydrazine demonstrated the highest levels of redox imbalance, mitochondrial injury, and oxidative DNA damage over a 28-day treatment period. In a clinical validation study of isoniazid-treated TB patients, peak isoniazid serum concentrations were positively associated with a urine biomarker of oxidative DNA damage. CONCLUSIONS: Isoniazid and its metabolites share the potential for oxidative cellular damage, with the greatest effects observed for hydrazine. Future studies should investigate the clinical consequences of oxidative stress with regards to clinical episodes of drug induced liver injury during isoniazid treatment.

15.
BMC Infect Dis ; 20(1): 556, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32736602

ABSTRACT

BACKGROUND: There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane metropolitan area, in South Africa. METHODS: Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable risk (AR) and corresponding 95% confidence intervals (CI). RESULTS: Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56-116). Lymphadenitis, meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95% CI: 1.82-141.60) and AR = 0.25 (95% CI: 0.06-0.43) when compared with other EPTB sites, which suggests that poor rifampin penetration might be a contributing factor. CONCLUSIONS: The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of resistance.


Subject(s)
Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/transmission , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genotype , Humans , Infant , Isoniazid/therapeutic use , Machine Learning , Male , Middle Aged , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Phylogeny , Rifampin/therapeutic use , South Africa , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Pulmonary/microbiology , Young Adult
17.
J Antimicrob Chemother ; 74(10): 2994-3002, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31273386

ABSTRACT

BACKGROUND: Reduced ethambutol serum concentrations are commonly observed among TB patients co-infected with HIV and may lead to treatment failure. OBJECTIVES: To perform a population pharmacokinetic study of ethambutol in HIV/TB patients, and to evaluate an intensified ethambutol weight-based dosing strategy to support pharmacokinetic target attainment. METHODS: We conducted a prospective study of ethambutol pharmacokinetics among HIV/TB patients administered first-line TB treatment in Botswana, with study visits before and after initiation of ART. Clinical and disease status markers, including HIV-associated systemic immune activation and gut dysfunction biomarkers, were evaluated as covariates of ethambutol pharmacokinetic parameters in non-linear mixed effects analysis. Monte Carlo simulations were performed to compare pharmacokinetic target attainment under standard and intensified weight-based ethambutol dosing strategies. RESULTS: We studied 40 HIV/TB patients prior to initiation of ART, of whom 24 returned for a second visit a median of 33 days following ART initiation. Ethambutol serum concentrations were best explained by a two-compartment model with first-order elimination, with a significant improvement in oral bioavailability following ART initiation. In Monte Carlo simulations, a supplementary ethambutol dose of 400 mg daily led to >2-fold improvements in pharmacokinetic target attainment probabilities in lung tissue, both before and after ART initiation. CONCLUSIONS: Low serum ethambutol concentrations were commonly observed among HIV/TB patients in Botswana, and the oral bioavailability of ethambutol increased following ART initiation. Supplementary ethambutol dosing among HIV/TB patients may provide a strategy to optimize anti-TB treatment regimens in this high-risk population.


Subject(s)
Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacokinetics , Coinfection/drug therapy , Ethambutol/administration & dosage , Ethambutol/pharmacokinetics , HIV Infections/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adult , Biological Availability , Botswana , Female , Humans , Male , Middle Aged , Prospective Studies
18.
Am J Respir Crit Care Med ; 200(3): 370-380, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30694692

ABSTRACT

Rationale: There is poor understanding about protective immunity and the pathogenesis of cavitation in patients with tuberculosis.Objectives: To map pathophysiological pathways at anatomically distinct positions within the human tuberculosis cavity.Methods: Biopsies were obtained from eight predetermined locations within lung cavities of patients with multidrug-resistant tuberculosis undergoing therapeutic surgical resection (n = 14) and healthy lung tissue from control subjects without tuberculosis (n = 10). RNA sequencing, immunohistochemistry, and bacterial load determination were performed at each cavity position. Differentially expressed genes were normalized to control subjects without tuberculosis, and ontologically mapped to identify a spatially compartmentalized pathophysiological map of the cavity. In silico perturbation using a novel distance-dependent dynamical sink model was used to investigate interactions between immune networks and bacterial burden, and to integrate these identified pathways.Measurements and Main Results: The median (range) lung cavity volume on positron emission tomography/computed tomography scans was 50 cm3 (15-389 cm3). RNA sequence reads (31% splice variants) mapped to 19,049 annotated human genes. Multiple proinflammatory pathways were upregulated in the cavity wall, whereas a downregulation "sink" in the central caseum-fluid interface characterized 53% of pathways including neuroendocrine signaling, calcium signaling, triggering receptor expressed on myeloid cells-1, reactive oxygen and nitrogen species production, retinoic acid-mediated apoptosis, and RIG-I-like receptor signaling. The mathematical model demonstrated that neuroendocrine, protein kinase C-θ, and triggering receptor expressed on myeloid cells-1 pathways, and macrophage and neutrophil numbers, had the highest correlation with bacterial burden (r > 0.6), whereas T-helper effector systems did not.Conclusions: These data provide novel insights into host immunity to Mycobacterium tuberculosis-related cavitation. The pathways defined may serve as useful targets for the design of host-directed therapies, and transmission prevention interventions.


Subject(s)
Mycobacterium tuberculosis/isolation & purification , Sequence Analysis, RNA , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/microbiology , Adolescent , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , RNA, Viral/isolation & purification , Young Adult
19.
J Infect Dis ; 219(6): 975-985, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30597040

ABSTRACT

Drug-resistant tuberculosis represents a global emergency, requiring new drugs. We found that minocycline was highly potent in laboratory strains of Mycobacterium tuberculosis and that 30 drug-susceptible and multidrug/extensively drug-resistant clinical strains were susceptible to clinically achievable concentrations. In the hollow fiber system model, lung concentration-time profiles of 7 mg/kg/day human-equivalent minocycline dose achieved bacterial kill rates equivalent to those of first-line antituberculosis agents. Minocycline killed extracellular bacilli directly. Minocycline also killed intracellular bacilli indirectly, via concentration-dependent granzyme A-driven apoptosis. Moreover, minocycline demonstrated dose-dependent antiinflammatory activity and downregulation of extracellular matrix-based remodeling pathways and, thus, could protect patients from tuberculosis immunopathology. In RNA sequencing of repetitive samples from the hollow fiber system and in independent protein abundance experiments, minocycline demonstrated dose-dependent inhibition of sonic hedgehog-patched-gli signaling. These findings have implications for improved lung remodeling and for dual immunomodulation and direct microbial kill-based treatment shortening regimens for drug-susceptible and drug-resistant latent and active M. tuberculosis infection.


Subject(s)
Antitubercular Agents/pharmacology , Minocycline/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Granzymes/metabolism , Hedgehog Proteins , Humans , Microbial Sensitivity Tests , Signal Transduction , THP-1 Cells , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/immunology , Tuberculosis, Multidrug-Resistant/microbiology
20.
Clin Infect Dis ; 67(suppl_3): S284-S292, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30496458

ABSTRACT

Background: In the experimental arm of the OFLOTUB trial, gatifloxacin replaced ethambutol in the standard 4-month regimen for drug-susceptible pulmonary tuberculosis. The study included a nested pharmacokinetic (PK) study. We sought to determine if PK variability played a role in patient outcomes. Methods: Patients recruited in the trial were followed for 24 months, and relapse ascertained using spoligotyping. Blood was drawn for drug concentrations on 2 separate days during the first 2 months of therapy, and compartmental PK analyses was performed. Failure to attain sustained sputum culture conversion at the end of treatment, relapse, or death during follow-up defined therapy failure. In addition to standard statistical analyses, we utilized an ensemble of machine-learning methods to identify patterns and predictors of therapy failure from among 27 clinical and laboratory features. Results: Of 126 patients, 95 (75%) had favorable outcomes and 19 (15%) failed therapy, relapsed, or died. Pyrazinamide and rifampicin peak concentrations and area under the concentration-time curves (AUCs) were ranked higher (more important) than gatifloxacin AUCs. The distribution of individual drug concentrations and their ranking varied significantly between South African and West African trial sites; however, drug concentrations still accounted for 31% and 75% of variance of outcomes, respectively. We identified a 3-way antagonistic interaction of pyrazinamide, gatifloxacin, and rifampicin concentrations. These negative interactions disappeared if rifampicin peak concentration was above 7 mg/L. Conclusions: Concentration-dependent antagonism contributed to death, relapse, and therapy failure but was abrogated by high rifampicin concentrations. Therefore, increasing both rifampin and gatifloxacin doses could improve outcomes. Clinical Trials Registration: NCT00216385.


Subject(s)
Antitubercular Agents/pharmacokinetics , Artificial Intelligence , Gatifloxacin/pharmacokinetics , Pyrazinamide/pharmacokinetics , Rifampin/pharmacokinetics , Tuberculosis, Pulmonary/drug therapy , Adolescent , Adult , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...