Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035570

ABSTRACT

Recent studies have discovered a substantial viscosity increase of aqueous cellulose nanocrystal (CNC) dispersions upon heat aging at temperatures above 90 °C. This distinct change in material properties at very low concentrations in water has been proposed as an active mechanism for enhanced oil recovery (EOR), as highly viscous fluid may improve macroscopic sweep efficiencies and mitigate viscous fingering. A high-temperature (120 °C) core flood experiment was carried out with 1 wt. % CNC in low salinity brine on a 60 cm-long sandstone core outcrop initially saturated with crude oil. A flow rate corresponding to 24 h per pore volume was applied to ensure sufficient viscosification time within the porous media. The total oil recovery was 62.2%, including 1.2% oil being produced during CNC flooding. Creation of local log-jams inside the porous media appears to be the dominant mechanism for additional oil recovery during nano flooding. The permeability was reduced by 89.5% during the core flood, and a thin layer of nanocellulose film was observed at the inlet of the core plug. CNC fluid and core flood effluent was analyzed using atomic force microscopy (AFM), particle size analysis, and shear rheology. The effluent was largely unchanged after passing through the core over a time period of 24 h. After the core outcrop was rinsed, a micro computed tomography (micro-CT) was used to examine heterogeneity of the core. The core was found to be homogeneous.

2.
Polymers (Basel) ; 11(2)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30960293

ABSTRACT

The CO2 absorption of liquid crystalline phases of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic L92, (EO)8(PO)47(EO)8), monoethanolamine (MEA), and water, with a composition of 60% L92/10% MEA/30% water has been investigated to assess potential use in carbon capture and storage applications. Vapor⁻liquid equilibrium data of the liquid crystalline system with CO2 was recorded up to a CO2 partial pressure of 6 bar, where a loading of 38.6 g CO2/kg sample was obtained. Moreover, the phase transitions occurring during the loading process were investigated by small angle X-ray scattering (SAXS), presenting a transition from lamellar + hexagonal phase to hexagonal (at 25 °C). In addition, the rheology of samples with varying loadings was also studied, showing that the viscosity increases with increasing CO2-loading until the phase transition to hexagonal phase is completed. Finally, thermal stability experiments were performed, and revealed that L92 does not contribute to MEA degradation.

3.
Polymers (Basel) ; 10(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30960808

ABSTRACT

Ternary systems consisting of amphiphilic block copolymers/water/monoethanolamine (MEA) have been studied as potential solvents for carbon capture and storage (CCS). The phase behavior of two poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers with average compositions (EO)8(PO)47(EO)8 (L92) and (EO)3(PO)50(EO)3 (L81) have been investigated by cross-polarized visual observation and small angle X-ray scattering (SAXS). The respective ternary phase diagrams have been studied for systems containing MEA and the equivalent systems containing CO2-loaded MEA. The presence of MEA loaded with CO2 hinders self-association, preventing the formation of liquid crystalline phases. One-phase liquid crystalline regions were found at low MEA concentrations (below 20 wt %) in L92. In the case of L81, only one one-phase region consisting of coexisting lamellar and disordered aggregates was found at 5 wt % MEA. The swelling of the liquid crystalline phases with MEA was investigated along designated dilution lines. The lattice parameters of L92 liquid crystals decrease upon addition of MEA, whereas L81 aggregates show the opposite behavior.

4.
Adv Colloid Interface Sci ; 169(2): 106-27, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22047991

ABSTRACT

Fluid characterization is a key technology for success in process design for crude oil mixtures in the future offshore. In the present article modern methods have been developed and optimized for crude oil applications. The focus is on destabilization processes in w/o emulsions, such as creaming/sedimentation and flocculation/coalescence. In our work, the separation technology was based on improvement of current devices to promote coalescence of the emulsified systems. Stabilizing properties based on particles was given special attention. A variety of particles like silica nanoparticles (AEROSIL®), asphalthenes, wax (paraffin) were used. The behavior of these particles and corresponding emulsion systems was determined by use of modern analytical equipment, such as SARA fractionation, NIR, electro-coalescers (determine critical electric field), Langmuir technique, pedant drop technique, TG-QCM, AFM.


Subject(s)
Petroleum , Emulsions/chemistry , Particle Size , Surface Properties , Water/chemistry
5.
J Colloid Interface Sci ; 356(1): 58-62, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21269639

ABSTRACT

The nature of layers formed by cellulose nanofibrils that had been surface modified (hydrophobized) at the oil/water (o/w) interface was investigated. The aim of the study was to clarify the mechanism underlying the excellent ability of these nanoparticles to stabilize emulsions. Layers of hydrophobized nanofibrillated cellulose spread at the o/w interface were deposited on glass slides by the Langmuir-Blodgett deposition technique. Overall evaluation of layer structures was performed by image analysis based on a Quadtree decomposition of images obtained from a flatbed scanner. A more detailed characterization of the layer structures was performed by Atomic Force Microscopy (AFM), and Field-Emission Scanning Electron Microscopy (FE-SEM). The results show that nanofibrils that were able to stabilize emulsions occur as single, dispersed fibrils or form large, network-like aggregates at the o/w interface. Fibrils that were insufficiently hydrophobized and therefore did not stabilize emulsions were only partially deposited and formed small, compact aggregates. We conclude that it is likely that the network formation is the main mechanism by which the fibrils prevent coalescence of emulsion droplets.

6.
J Colloid Interface Sci ; 325(1): 228-35, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18538336

ABSTRACT

Alkylsiloxane and perfluoroalkylsiloxane monolayers are prepared on siliceous surfaces using the techniques of Langmuir-Blodgett deposition and solid-liquid chemical adsorption. Acid-catalyzed hydrolysis and polycondensation reactions provide two-dimensional siloxane networks at the liquid-vapor interface, which can be compressed to mean molecular areas of approximately 22 and approximately 32 A(2) for pendent hydrocarbon and fluorocarbon chains, respectively. Subsequent Langmuir-Blodgett transfer onto glass substrates at moderate surface pressures leads to compact monolayers for single-component precursors, while mixed alkyl- and perfluoroalkylsilanes produce nonhomogeneous films characterized by transfer ratios greater than unity. As an alternate monolayer preparation technique, silane polymerization was performed directly on siliceous surfaces via a chemical adsorption mechanism. XPS analysis of a chemically adsorbed 1H,1H,2H,2H-perfluorodecylsiloxane film confirms a single adsorbed monolayer thickness in which the pendent fluoroalkyl chains align nonperpendicularly with respect to the surface. The surface free energy was determined to be 11.4 dyn cm(-1) based on static contact angle measurements. AFM imaging shows the presence of surface defects due to oligomer deposition during the drying process. The use of solubilized trichloro-based silane coupling agents under anhydrous conditions is shown to produce surfaces with a minimal number of surface defects. The presence of undissolved silane material in the bulk solution significantly increases the number of surface defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...