Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 9: e70590, 2021.
Article in English | MEDLINE | ID: mdl-34690516

ABSTRACT

BACKGROUND: This dataset relates to the biodiversity census carried out during the Belgica 121 (B121) expedition to the Western Antarctic Peninsula from February to March 2019. One of the aims of the campaign was to explore the surroundings of the Gerlache Strait and to carry out a detailed biodiversity census focusing on inter- and subtidal shallow-water areas using both classic descriptive marine ecology methods, as well as state-of-the art techniques (habitat mapping, genetics, trophic ecology). The biodiversity census was carried out onboard a nimble research vessel, RV Australis. This dataset will offer access to the raw data on biodiversity occurrences, obtained using a range of methods described in this data paper. NEW INFORMATION: New raw biodiversity data for a poorly-sampled region (Western Antarctic Peninsula) with a special focus on shallow ecosystems.

2.
BMC Genomics ; 22(1): 625, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418978

ABSTRACT

BACKGROUND: Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS: In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS: Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.


Subject(s)
Metagenomics , Research Design , Animals , Genome , Genomics , Humans , Sequence Analysis, DNA
3.
Commun Biol ; 4(1): 148, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514890

ABSTRACT

Climate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Niño spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Niña spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor.


Subject(s)
Autotrophic Processes , Biota , Carbon Cycle , Global Warming , Heterotrophic Processes , Microalgae/metabolism , Antarctic Regions , Environmental Monitoring , Food Chain , Ice , Microalgae/growth & development , Oceans and Seas , Seasons
5.
PLoS One ; 13(12): e0207917, 2018.
Article in English | MEDLINE | ID: mdl-30566444

ABSTRACT

Measurements of biogeochemical fluxes at the sediment-water interface are essential to investigate organic matter mineralization processes but are rarely performed in shallow coastal areas of the Antarctic. We investigated biogeochemical fluxes across the sediment-water interface in Potter Cove (King George Island/Isla 25 de Mayo) at water depths between 6-9 m. Total fluxes of oxygen and inorganic nutrients were quantified in situ. Diffusive oxygen fluxes were also quantified in situ, while diffusive inorganic nutrient fluxes were calculated from pore water profiles. Biogenic sediment compounds (concentration of pigments, total organic and inorganic carbon and total nitrogen), and benthic prokaryotic, meio-, and macrofauna density and biomass were determined along with abiotic parameters (sediment granulometry and porosity). The measurements were performed at three locations in Potter Cove, which differ in terms of sedimentary influence due to glacial melt. In this study, we aim to assess secondary effects of glacial melting such as ice scouring and particle release on the benthic community and the biogeochemical cycles they mediate. Furthermore, we discuss small-scale spatial variability of biogeochemical fluxes in shallow water depth and the required food supply to cover the carbon demand of Potter Cove's shallow benthic communities. We found enhanced mineralization in soft sediments at one location intermediately affected by glacial melt-related effects, while a reduced mineralization was observed at a location influenced by glacial melting. The benthic macrofauna assemblage constituted the major benthic carbon stock (>87% of total benthic biomass) and was responsible for most benthic organic matter mineralization. However, biomass of the dominant Antarctic bivalve Laternula elliptica, which contributed 39-69% to the total macrofauna biomass, increased with enhanced glacial melt-related influence. This is contrary to the pattern observed for the remaining macrofauna. Our results further indicated that pelagic primary production is able to fully supply Potter Cove's benthic carbon demand. Therefore, Potter Cove seems to be an autotrophic ecosystem in the summer season.


Subject(s)
Geologic Sediments/chemistry , Ice Cover/chemistry , Animals , Antarctic Regions , Biomass , Carbon/analysis , Ecosystem , Geologic Sediments/microbiology , Ice Cover/microbiology , Nitrogen/analysis , Oxygen/analysis , Seasons
6.
PLoS One ; 10(11): e0141742, 2015.
Article in English | MEDLINE | ID: mdl-26559062

ABSTRACT

The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Food Chain , Ice Cover , Amphipoda/physiology , Animals , Antarctic Regions , Aquatic Organisms/classification , Carbon Isotopes , Copepoda/physiology , Crustacea/physiology , Estuaries , Geography , Invertebrates/classification , Invertebrates/physiology , Nematoda/physiology , Nitrogen Isotopes , Phytoplankton/classification , Phytoplankton/physiology , Population Dynamics , Seawater , Seaweed/classification , Seaweed/physiology , Zooplankton/classification , Zooplankton/physiology
7.
Mar Environ Res ; 90: 128-35, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23937893

ABSTRACT

Because offshore wind energy development is fast growing in Europe it is important to investigate the changes in the marine environment and how these may influence local biodiversity and ecosystem functioning. One of the species affected by these ecosystem changes is Atlantic cod (Gadus morhua), a heavily exploited, commercially important fish species. In this research we investigated the residency, site fidelity and habitat use of Atlantic cod on a temporal scale at windmill artificial reefs in the Belgian part of the North Sea. Acoustic telemetry was used and the Vemco VR2W position system was deployed to quantify the movement behaviour. In total, 22 Atlantic cod were tagged and monitored for up to one year. Many fish were present near the artificial reefs during summer and autumn, and demonstrated strong residency and high individual detection rates. When present within the study area, Atlantic cod also showed distinct habitat selectivity. We identified aggregation near the artificial hard substrates of the wind turbines. In addition, a clear seasonal pattern in presence was observed. The high number of fish present in summer and autumn alternated with a period of very low densities during the winter period.


Subject(s)
Animal Distribution , Ecosystem , Gadus morhua/physiology , Animals , Belgium , North Sea , Telemetry
8.
Ecol Evol ; 2(2): 453-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22423336

ABSTRACT

Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...