Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 344: 199353, 2024 06.
Article in English | MEDLINE | ID: mdl-38490581

ABSTRACT

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2 , Humans , Tunisia/epidemiology , COVID-19/virology , COVID-19/epidemiology , Child , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Child, Preschool , Infant , Adolescent , Male , Infant, Newborn , Female
2.
Microorganisms ; 9(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668440

ABSTRACT

A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm.

SELECTION OF CITATIONS
SEARCH DETAIL
...