Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918403

ABSTRACT

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Subject(s)
Neurons , Nociceptin , Opioid Peptides , Receptors, Opioid , Animals , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Receptors, Opioid/genetics , Neurons/metabolism , Humans , Mice , Male , Ventral Tegmental Area/metabolism , Nociceptin Receptor , HEK293 Cells , Brain/metabolism , Mice, Inbred C57BL , Ligands , Biosensing Techniques/methods
3.
Cell Rep ; 41(4): 111521, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288710

ABSTRACT

Sudden unexpected environmental changes capture attention and, when perceived as potentially dangerous, evoke defensive behavioral states. Perturbations of the lateral septum (LS) can produce extreme hyperdefensiveness even to innocuous stimuli, but how this structure influences stimulus-evoked defensive responses and threat perception remains unclear. Here, we show that Crhr2-expressing neurons in mouse LS exhibit phasic activation upon detection of threatening but not rewarding stimuli. Threat-stimulus-driven activity predicts the probability but not vigor or type of defensive behavior evoked. Although necessary for and sufficient to potentiate stimulus-triggered defensive responses, LSCrhr2 neurons do not promote specific behaviors. Rather, their stimulation elicits negative valence and physiological arousal. Moreover, LSCrhr2 activity tracks brain state fluctuations and drives cortical activation and rapid awakening in the absence of threat. Together, our findings suggest that LS directs bottom-up modulation of cortical function to evoke preparatory defensive internal states and selectively enhance responsivity to threat-related stimuli.


Subject(s)
Fear , Neurons , Animals , Mice , Fear/physiology , Neurons/physiology , Brain , Attention
SELECTION OF CITATIONS
SEARCH DETAIL
...