Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(8): 2882-2890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36944039

ABSTRACT

BACKGROUND: Halyomorpha halys, (brown marmorated stink bug, BMSB), is a high-concern invasive species causing severe damage to orchards in many countries outside its native Asian range. Management methods other than frequent sprays of broad-spectrum insecticides are needed to restore integrated pest management (IPM) practices in orchards. Chitin synthesis inhibitors are usually regarded as desirable options in IPM programs because of lower toxicity to beneficial insects and non-target organisms compared to neurotoxic insecticides. In this study, the activity of three chitin synthesis inhibitors (namely buprofezin, novaluron and triflumuron) was investigated on BMSB egg masses, third instars and adults by means of laboratory bioassays. RESULTS: Novaluron and to a lesser extent triflumuron were detrimental to BMSB nymphs exposed to residues on potted peach plants. Novaluron caused high mortality among early instars that emerged from sprayed egg masses. No significant differences were found between buprofezin and water control on eggs or third instars. When sprayed on BMSB adults, none of the chitin synthesis inhibitors affected survival, fecundity, or egg hatching. CONCLUSION: Given the activity on nymphs, but the lack of effects on adults, novaluron and triflumuron might be considered for field applications only as a tool in a wider management strategy along with other methods aimed at preventing the invasion of crops by BMSB adults. © 2023 Society of Chemical Industry.


Subject(s)
Heteroptera , Insecticides , Animals , Insecticides/pharmacology , Nymph , Chitin
2.
J Econ Entomol ; 114(4): 1709-1715, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34104951

ABSTRACT

Halyomorpha halys, (the brown marmorated stink bug, BMSB), is a high-concern invasive species causing severe damage to orchards in many countries outside its native Asian range. Control options matching both effectiveness and sustainability are currently lacking. Inhibitors of chitin biosynthesis might be exploited for integrated management programs because of the overall better ecotoxicological profile in comparison with most neurotoxic insecticides used so far against BMSB. In this study, the activity of triflumuron, a benzoylphenyl urea hampering chitin biosynthesis, was tested on BMSB in laboratory and field conditions. In laboratory bioassays, the insecticide was sprayed on potted peach plants (30 cm high) and residues were aged in a glasshouse for 0, 7, 14, and 21 d. Then, third-instar bugs were placed on the plants and continuously exposed to residues. Mortality was scored after 7, 14, and 21 d exposure. Triflumuron caused significantly higher mortality on BMSB nymphs in comparison with water controls at all aging periods. Moreover, aging of residues up to 21 d did not cause any significant reduction of activity. Field experiments were also carried out in 2019 in eight pear orchards. Injuries to fruits at harvest were compared between plots where triflumuron was added to insecticide sprays against BMSB and control plots managed exactly in the same way but without any triflumuron treatment. An overall mean of 9.99 ± 1.98% stink bug injured fruits was detected in plots managed with the strategy including triflumuron, whereas 19.45 ± 3.55% of fruits were injured in plots assigned to controls.


Subject(s)
Heteroptera , Laboratories , Animals , Benzamides , Nymph
3.
J Econ Entomol ; 114(4): 1666-1673, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34021561

ABSTRACT

Brown marmorated stink bug, Halyomorpha halys, is native to Asia and has invaded North America and Europe inflicting serious agricultural damage to specialty and row crops. Tools to monitor the spread of H. halys include traps baited with the two-component aggregation pheromone (PHER), (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol, and pheromone synergist, methyl (2E,4E,6Z)-decatrienoate (MDT). Here, an international team of researchers conducted trials aimed at evaluating prototype commercial lures for H. halys to establish relative attractiveness of: 1) low and high loading rates of PHER and MDT for monitoring tools and attract and kill tactics; 2) polyethylene lure delivery substrates; and 3) the inclusion of ethyl (2E,4E,6Z)-decatrieonate (EDT), a compound that enhances captures when combined with PHER in lures. In general, PHER loading rate had a greater impact on overall trap captures compared with loading of MDT, but reductions in PHER loading and accompanying lower trap captures could be offset by increasing loading of MDT. As MDT is less expensive to produce, these findings enable reduced production costs. Traps baited with lures containing PHER and EDT resulted in numerically increased captures when EDT was loaded at a high rate, but captures were not significantly greater than those traps baited with lures containing standard PHER and MDT. Experimental polyethylene vial dispensers did not outperform standard lure dispensers; trap captures were significantly lower in most cases. Ultimately, these results will enable refinement of commercially available lures for H. halys to balance attraction and sensitivity with production cost.


Subject(s)
Heteroptera , Pheromones , Animals , Europe , Insect Control , North America , United States
4.
J Econ Entomol ; 110(6): 2662-2671, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29220516

ABSTRACT

Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity.


Subject(s)
Coleoptera/drug effects , Insecticides/toxicity , Animals , Aza Compounds/toxicity , Coleoptera/growth & development , Drug Combinations , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Larva/drug effects , Larva/growth & development , Macrolides/toxicity , Spiro Compounds/toxicity , ortho-Aminobenzoates/toxicity
5.
J Insect Physiol ; 57(10): 1407-19, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21802423

ABSTRACT

Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of "Candidatus Phytoplasma pyri" responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections for advanced breeding programs. The electrical penetration graph technique or (full) EPG may relevantly contribute to this knowledge. C. pyri EPG waveforms were characterized on basis of amplitude, frequency, voltage level, and electrical origin. Additionally, stylet tracks and the putative location of stylet tips in the plant tissue were histologically related to EPG waveforms by light and transmission electron microscopy observations after stylectomy. More than one waveform occurred in the same tissue: PA, PB, PC1 and PC2 were all detected in the mesophyll, and PE1 and PE2 were both recorded in the phloem. Waveform PE1 was always preceded by transient waveform PD, as previously described in other psyllids. Interestingly, no brief intracellular punctures (potential drop waveforms) were observed during plant penetration, opposite of what is usually recorded in aphids and other Sternorrhyncha.


Subject(s)
Feeding Behavior/physiology , Hemiptera/physiology , Pyrus/parasitology , Animals , Electrophysiological Phenomena , Hemiptera/ultrastructure , Microscopy, Electron, Transmission , Nymph/physiology
6.
Pest Manag Sci ; 65(3): 306-12, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19097022

ABSTRACT

BACKGROUND: Emamectin benzoate is a novel macrocyclic lactone insecticide derived from naturally occurring avermectin molecules isolated by fermentation from the soil microorganism Streptomyces avermitilis Kim & Goodfellow. The present study aims to evaluate the toxicity of emamectin benzoate to codling moth, Cydia pomonella (L.), and oriental fruit moth, C. molesta (Busck), under laboratory and semi-field conditions. RESULTS: Dose response bioassays showed that emamectin benzoate had a high level of intrinsic toxicity to early-stage larvae of both species, and that contact activity might contribute significantly to mortality. In the semi-field trials, residual toxicity lasted for more than 1 week. Ovicidal activity was recorded only for C. pomonella (approximately 30%), irrespective of the concentrations tested. Field trials confirmed the efficacy of emamectin benzoate on codling moth when applied at 7 day intervals. Fruit damage, both from the first and second generations, was comparable with that on treatment with chlorpyrifos-ethyl, used as a chemical reference. CONCLUSION: Emamectin benzoate may be considered a valuable tool for the control of codling moth as a component of an IPM programme. Its collective advantages are: high efficacy, lack of cross-resistance with currently used products, control of secondary pests such as oriental fruit moth and selective toxicity that spares beneficials.


Subject(s)
Ivermectin/analogs & derivatives , Moths/drug effects , Animals , Ivermectin/toxicity , Larva/drug effects , Moths/growth & development , Ovum/drug effects
7.
J Econ Entomol ; 100(5): 1637-41, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17972642

ABSTRACT

In northern Italy (Emilia-Romagna region), integrated pest management has been used for several years against pear psylla, Cacopsylla pyri L. (Hemiptera: Psyllidae), a relevant pest of pear (Pyrus spp.) trees. After the outlawing of amitraz in 2005, the most common active ingredient involved is abamectin, a mixture of avermectin B1a and avermectin B1b. After the development of C. pyri resistance to azinphos methyl in southern France, we evaluated, by topical application, the different sensitivities to abamectin on C. pyri populations collected in orchards from Emilia-Romagna, where different field strategies were used, with alternative success in terms of pest management. The LC50 values ranged between 1.61 and 28.37 mg/liter, and they revealed variations more related to collection time than to field strategies. The failure of abamectin treatments against C. pyri in some Emilia-Romagna locations is probably unrelated to resistance development, but rather it is related to incorrect pest defense management, which could interfere with pest parasitoids and predators.


Subject(s)
Hemiptera/drug effects , Ivermectin/analogs & derivatives , Animals , Insect Control , Insecticide Resistance , Italy , Ivermectin/pharmacology
8.
Pest Manag Sci ; 63(9): 890-902, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17665366

ABSTRACT

Only a few of the registered insecticides against Cydia pomonella L. are still effective in areas where insecticide resistance has emerged in this pest. Resistance mechanisms are multiple, and their lone or cumulative effects in a single population are not completely understood. A detailed estimation of resistance spectrum is still required to define the suitable insecticides to use against a given population. The efficacy of ten insecticides was therefore investigated together with the resistance mechanisms expressed in four laboratory strains and 47 field populations of C. pomonella from five countries. Bioassays were performed using topical applications of diagnostic concentrations on diapausing larvae, and resistance mechanisms were analysed on adults emerging from control insects. All populations exhibited a reduced susceptibility to at least one insecticide when compared with the susceptible laboratory strain. Cross-resistances were observed between azinphos-methyl or phosalone and more recent compounds such as spinosad and thiacloprid. Resistances to azinphos-methyl, diflubenzuron, spinosad, tebufenozide and thiacloprid were significantly correlated with mixed-function oxidase activity, while increased glutathione-S-transferase and reduced non-specific esterase activities were correlated with resistance to azinphos-methyl and emamectin, respectively. Conversely, resistances to azinphos-methyl, tebufenozide and thiacloprid were negatively correlated with increased esterase activity. None of the observed mechanisms explained the loss of susceptibility of populations to chlorpyrifos-ethyl, and no significant correlation was detected between resistance to deltamethrin and the presence of the kdr mutation. The suitability of such non-target instars to monitor insecticide resistance in field populations is discussed.


Subject(s)
Insecticide Resistance/physiology , Insecticides , Moths/drug effects , Animals , Biological Assay , Europe , Larva/drug effects , Moths/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...