Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 208: 112072, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481248

ABSTRACT

Biosurfactants are molecules with surfactant properties produced by microorganisms, and can be used in various industrial sectors, e.g., the oil industry. These molecules can be used in enhanced oil recovery (EOR) in the pre-salt and post-salt reservoirs, where conditions of temperature, pressure, and salinity are quite varied, requiring a study of the stability of these molecules under these conditions. Bacillus velezensis H2O-1 produces five different surfactin homologs with a fatty-acid chain ranging from C11 to C16 and with a high capacity to reduce surface (24.8 mN.m-1) and interfacial tensions (1.5 and 0.8 8 mN.m-1 using light, medium oil and n-hexadecane, respectively). The critical micellar concentration (CMC) was 38.7 mg.L-1. Inversion wettability tests were carried out under the salinity conditions found in the post-salt (35 g.L-1) and pre-salt (70 g.L-1) reservoirs, in which it was observed that the surfactin reversed 100 % of the wettability of the calcite impregnated with light and medium oil. Using a central composite rotatable design, we demonstrated that surfactin maintained its interfacial properties when subjected simultaneously to extreme conditions of pressure, temperature and salinity commonly found in the post-salt (70 °C, 70 g.L-1 and 27.58 MPa) and pre-salt (100 °C, 150 g.L-1 and 48.2 MPa) layers. The results presented here highlight the efficiency and stability of H2O-1 surfactin in environmental conditions found in pre-salt and post-salt oil reservoirs.


Subject(s)
Bacillus , Lipopeptides , Oil and Gas Fields , Surface Tension , Surface-Active Agents
2.
Chemosphere ; 252: 126349, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32443257

ABSTRACT

Biosurfactants have potential applications in the remediation of petroleum-contaminated sites. Several strategies can be used to reduce the production costs of these surfactants and make the process more environmentally friendly. In this study, we combined some of these strategies to produce the rhamnolipid-type biosurfactant, including the use of the genetically modified strain Pseudomonas aeruginosa-estA, an industrial coproduct as a carbon source, a simple and low-cost medium, and a simple downstream process. The process resulted in a high yield (17.6 g L-1), even using crude glycerin as the carbon source, with substrate in product conversion factor (YRML/s) of 0.444. The cell-free supernatant (CFS) was not toxic to Artemia salina and selected mammalian cell lineages, suggesting that it can be used directly in the environment without further purification steps. Qualitative analysis showed that CFS has excellent dispersion in the oil-displacement test, emulsifying (IE24 = 65.5%), and tensoactive properties. When salinity, temperature and pressure were set to seawater conditions, the values for interfacial tension between crude oil and water were below 1.0 mN m-1. Taken together, these results demonstrate that it is possible to obtain a nontoxic crude rhamnolipid product, with high productivity, to replace petroleum-based surfactants in oil spill cleanups and other environmental applications.


Subject(s)
Biodegradation, Environmental , Glycolipids/metabolism , Petroleum/metabolism , Animals , Artemia , Carbon , Emulsions , Petroleum/analysis , Petroleum Pollution/analysis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Surface Tension , Surface-Active Agents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...