Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 21(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884145

ABSTRACT

The automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. In contrast to conventional video tracking systems, radar tracking requires low processing power, is independent on light variations and has more accurate estimations of animal positions due to a lower misdetection rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor behavioural test used for assessing social motivation. We derived new estimators from the radar data that can be used to improve the behavioural phenotyping of the sheep. We then showed how radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises precision farming through high-throughput recording of the behaviour of untagged animals in different types of environments.


Subject(s)
Movement , Radar , Agriculture , Animals , Data Collection , Monitoring, Physiologic , Sheep
2.
PLoS Comput Biol ; 17(7): e1009260, 2021 07.
Article in English | MEDLINE | ID: mdl-34319987

ABSTRACT

Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of movements leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, the addition of a negative reinforcement of movements leading to unrewarding flowers is necessary when flowers are patchily distributed. In environments with more complex spatial structures, the negative experiences of individual bees on flowers favour spatial segregation and efficient collective foraging. Our study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to guide future experimental programs.


Subject(s)
Bees/physiology , Models, Biological , Animals , Behavior, Animal/physiology , Computational Biology , Computer Simulation , Feeding Behavior/physiology , Flight, Animal/physiology , Flowers , Learning/physiology , Pollination , Reinforcement, Psychology , Systems Analysis
3.
Ecotoxicol Environ Saf ; 212: 112008, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33578129

ABSTRACT

Pollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development. Honey bees exposed to the highest of these low concentrations had reduced olfactory learning performances. These honey bees also developed smaller heads, which may have constrained their cognitive functions as we show a general relationship between head size and learning performance. Our results demonstrate that lead pollutants, even at trace levels, can have dramatic effects on honey bee cognitive abilities, potentially altering key colony functions and the pollination service.


Subject(s)
Bees/drug effects , Behavior, Animal/drug effects , Environmental Pollutants/toxicity , Lead/toxicity , Reversal Learning/drug effects , Animals , Bees/physiology , Cephalometry , Cognition/drug effects , Dose-Response Relationship, Drug , Head/anatomy & histology , Pollination
4.
Microorganisms ; 9(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445614

ABSTRACT

Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.

5.
Curr Zool ; 65(4): 437-446, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31413716

ABSTRACT

Animals have evolved foraging strategies to acquire blends of nutrients that maximize fitness traits. In social insects, nutrient regulation is complicated by the fact that few individuals, the foragers, must address the divergent nutritional needs of all colony members simultaneously, including other workers, the reproductives, and the brood. Here we used 3D nutritional geometry design to examine how bumblebee workers regulate their collection of 3 major macronutrients in the presence and absence of brood. We provided small colonies artificial nectars (liquid diets) and pollens (solid diets) varying in their compositions of proteins, lipids, and carbohydrates during 2 weeks. Colonies given a choice between nutritionally complementary diets self-selected foods to reach a target ratio of 71% proteins, 6% carbohydrates, and 23% lipids, irrespective of the presence of brood. When confined to a single nutritionally imbalanced solid diet, colonies without brood regulated lipid collection and over-collected protein relative to this target ratio, whereas colonies with brood regulated both lipid and protein collection. This brood effect on the regulation of nutrient collection by workers suggests that protein levels are critical for larval development. Our results highlight the importance of considering bee nutrition as a multidimensional phenomenon to better assess the effects of environmental impoverishment and malnutrition on population declines.

6.
Sci Rep ; 9(1): 6778, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043647

ABSTRACT

Honey bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions. Here we explored the relationship between foraging activity and foraging performance in honey bees (Apis mellifera) by using an automated behaviour monitoring system to record mass on departing the hive, trip duration, presence of pollen on the hind legs and mass upon return to the hive, during the lifelong foraging career of individual bees. In our colonies, only a subset of foragers collected pollen, and no bee exclusively foraged for pollen. A minority of very active bees (19% of the foragers) performed 50% of the colony's total foraging trips, contributing to both pollen and nectar collection. Foraging performance (amount and rate of food collection) depended on bees' individual experience (amount of foraging trips completed). We argue that this reveals an important vulnerability for these social bees since environmental stressors that alter the activity and reduce the lifespan of foragers may prevent bees ever achieving maximal performance, thereby seriously compromising the effectiveness of the colony foraging force.


Subject(s)
Animal Communication , Bees/physiology , Behavior, Animal/physiology , Feeding Behavior/physiology , Flight, Animal/physiology , Plant Nectar , Pollen/chemistry , Animals , Longevity
7.
Mov Ecol ; 7: 4, 2019.
Article in English | MEDLINE | ID: mdl-30828455

ABSTRACT

BACKGROUND: Individual bees exhibit complex movement patterns to efficiently exploit small areas within larger plant populations. How such individual spatial behaviours scale up to the collective level, when several foragers visit a common area, has remained challenging to investigate, both because of the low resolution of field movement data and the limited power of the statistical descriptors to analyse them. To tackle these issues we video recorded all flower visits (N = 6205), and every interaction on flowers (N = 628), involving foragers from a bumblebee (Bombus terrestris) colony in a large outdoor flight cage (880 m2), containing ten artificial flowers, collected on five consecutive days, and analysed bee movements using networks statistics. RESULTS: Bee-flower visitation networks were significantly more modular than expected by chance, indicating that foragers minimized overlaps in their patterns of flower visits. Resource partitioning emerged from differences in foraging experience among bees, and from outcomes of their interactions on flowers. Less experienced foragers showed lower activity and were more faithful to some flowers, whereas more experienced foragers explored the flower array more extensively. Furthermore, bees avoided returning to flowers from which they had recently been displaced by a nestmate, suggesting that bees integrate memories of past interactions into their foraging decisions. CONCLUSION: Our observations, under high levels of competition in a flight cage, suggest that the continuous turnover of foragers observed in colonies can led to efficient resource partitioning among bees in natural conditions.

8.
Curr Opin Insect Sci ; 28: 73-80, 2018 08.
Article in English | MEDLINE | ID: mdl-30551770

ABSTRACT

Nutrition is thought to be a major driver of social evolution, yet empirical support for this hypothesis is scarce. Here we illustrate how conceptual advances in nutritional ecology illuminate some of the mechanisms by which nutrition mediates social interactions in insects. We focus on experiments and models of nutritional geometry and argue that they provide a powerful means for comparing nutritional phenomena across species exhibiting various social ecologies. This approach, initially developed to study the nutritional behaviour of individual insects, has been increasingly used to study insect groups and societies, leading to the emerging field of social nutrition. We discuss future directions for exploring how these nutritional mechanisms may influence major social transitions in insects and other animals.


Subject(s)
Animal Nutritional Physiological Phenomena , Insecta/physiology , Animals , Ecology , Social Behavior
9.
Genes (Basel) ; 9(11)2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30404178

ABSTRACT

Microbes influence a wide range of host social behaviors and vice versa. So far, however, the mechanisms underpinning these complex interactions remain poorly understood. In social animals, where individuals share microbes and interact around foods, the gut microbiota may have considerable consequences on host social interactions by acting upon the nutritional behavior of individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the study of these processes and allow the formulation of new empirically testable predictions. First, we review key evidence showing that gut microbes influence the nutrition of individual animals, through modifications of their nutritional state and feeding decisions. Next, we describe how these microbial influences and their social consequences can be studied by modelling populations of hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry. Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical and experimental research on the role of the gut microbiota in the mechanisms and evolution of social behavior.

10.
Sci Rep ; 7(1): 4561, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676725

ABSTRACT

Workers of social insects, such as bees, ants and wasps, show some degree of inter-individual variability in decision-making, learning and memory. Whether these natural cognitive differences translate into distinct adaptive behavioural strategies is virtually unknown. Here we examined variability in the movement patterns of bumblebee foragers establishing routes between artificial flowers. We recorded all flower visitation sequences performed by 29 bees tested for 20 consecutive foraging bouts in three experimental arrays, each characterised by a unique spatial configuration of artificial flowers and three-dimensional landmarks. All bees started to develop efficient routes as they accumulated foraging experience in each array, and showed consistent inter-individual differences in their levels of route fidelity and foraging performance, as measured by travel speed and the frequency of revisits to flowers. While the tendency of bees to repeat the same route was influenced by their colony origin, foraging performance was correlated to body size. The largest foragers travelled faster and made less revisits to empty flowers. We discuss the possible adaptive value of such inter-individual variability within the forager caste for optimisation of colony-level foraging performances in social pollinators.


Subject(s)
Bees , Biological Variation, Individual , Feeding Behavior , Animals , Body Size , Flight, Animal , Flowers , Models, Statistical , Pollination
11.
Front Neurosci ; 11: 2, 2017.
Article in English | MEDLINE | ID: mdl-28154521

ABSTRACT

In a previous study (Dufour et al., 2015) we reported the unusual characteristics of the drumming performance of a chimpanzee named Barney. His sound production, several sequences of repeated drumming on an up-turned plastic barrel, shared features typical for human musical drumming: it was rhythmical, decontextualized, and well controlled by the chimpanzee. This type of performance raises questions about the origins of our musicality. Here we recorded spontaneously occurring events of sound production with objects in Barney's colony. First we collected data on the duration of sound making. Here we examined whether (i) the context in which objects were used for sound production, (ii) the sex of the producer, (iii) the medium, and (iv) the technique used for sound production had any effect on the duration of sound making. Interestingly, duration of drumming differed across contexts, sex, and techniques. Then we filmed as many events as possible to increase our chances of recording sequences that would be musically similar to Barney's performance in the original study. We filmed several long productions that were rhythmically interesting. However, none fully met the criteria of musical sound production, as previously reported for Barney.

13.
Curr Zool ; 63(4): 379-388, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29491998

ABSTRACT

Numerous studies have investigated the remarkable variation of social features and the resulting structures across species. Indeed, relationships are dynamic and vary in time according to various factors such as environmental conditions or individuals attributes. However, few studies have investigated the processes that stabilize the structures within a given species, and the behavioral mechanisms that ensure their coherence and continuity across time. Here, we used a dynamic actor-based model, RSiena, to investigate the consistency of the temporal dynamic of relationships of a group of captive rooks facing recurrent modifications in group composition (i.e., the loss and introduction of individuals). We found that changes in relationships (i.e., formation and removal) followed consistent patterns regardless of group composition and sex-ratio. Rooks preferentially interacted with paired congeners (i.e., unpopular attachment) and were more likely to form relationships with individuals bonded to a current social partner (i.e., "friends of friends", or triadic closure). The sex of individuals had no effect on the dynamic of relationships. This robust behavioral mechanisms formed the basis of inter-connected networks, composed of sub-structures of individuals emerging from the enmeshment of dyadic and triadic motifs. Overall, the present study reveals crucial aspects of the behavioral mechanisms shaping rooks social structure, suggesting that rooks live in a well-integrated society, going far beyond the unique monogamous pair-bond.

14.
PLoS One ; 11(9): e0162548, 2016.
Article in English | MEDLINE | ID: mdl-27655156

ABSTRACT

Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.

16.
Front Psychol ; 7: 539, 2016.
Article in English | MEDLINE | ID: mdl-27148146

ABSTRACT

Social learning - the transmission of behaviors through observation or interaction with conspecifics - can be viewed as a decision-making process driven by interactions among individuals. Animal group structures change over time and interactions among individuals occur in particular orders that may be repeated following specific patterns, change in their nature, or disappear completely. Here we used a stochastic actor-oriented model built using the RSiena package in R to estimate individual behaviors and their changes through time, by analyzing the dynamic of the interaction network of the fruit fly Drosophila melanogaster during social learning experiments. In particular, we re-analyzed an experimental dataset where uninformed flies, left free to interact with informed ones, acquired and later used information about oviposition site choice obtained by social interactions. We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor. Regardless of the degree of information acquisition measured in uninformed individuals, they always received and started interactions more frequently than informed ones did. However, information was efficiently transmitted (i.e., uninformed flies predominantly laid eggs on the same medium informed ones had learn to prefer) only when the difference in contacts sent between the two fly types was small. Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies. This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

17.
Proc Biol Sci ; 283(1827): 20152967, 2016 03 30.
Article in English | MEDLINE | ID: mdl-27009219

ABSTRACT

Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions.


Subject(s)
Drosophila melanogaster/physiology , Genetic Variation , Phenotype , Animals , Decision Making , Drosophila melanogaster/genetics , Female , Models, Biological , Social Behavior , Social Environment
18.
Proc Biol Sci ; 283(1826): 20152954, 2016 03 16.
Article in English | MEDLINE | ID: mdl-26936247

ABSTRACT

Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a 'follow' outcome compared with the case of an 'avoid' outcome.


Subject(s)
Drosophila melanogaster/physiology , Animals , Decision Making , Female , Learning , Oviposition , Social Behavior
19.
PLoS One ; 11(2): e0147404, 2016.
Article in English | MEDLINE | ID: mdl-26841107

ABSTRACT

The successful reintroduction and restocking of the European Bison demands a reliable knowledge of the biology of this species. Yet little is known to date about the European bison, and empirical data remains insufficient to set up a reliable plan ensuring the reintroduction, maintenance and survival of populations in habitats that have been largely modified by human activity. Studies of the ecology, social behaviour and management of bison are therefore crucial to the conservation of this species and its cohabitation with humans. To meet these challenges, we focused on movement patterns and space use in a semi-free-ranging herd of European bison living in the Réserve Biologique des Monts-d'Azur (France). Bison spend over 80% of their time foraging and resting; foraging mainly occurs around the artificial feeding sites (i.e., hay racks) or in meadows. The time of day and the presence of snow have no influence on the time budget allocated to each activity. Animals, however, spend more time at the food racks in winter. Bison also spend most of their time in small groups of individuals, confirming the occurrence of both fission-fusion dynamics and sexual segregation in this species. Bison seem to follow a Lévy walk pattern of movement, which is probably related to the geographical distribution and size of food patches in the reserve. The conclusions of this study provide a better understanding of the sociality, life habits and habitat use of bison, and also describe how the provision of hay affects all these behaviours. These results could be useful in the development of tools to select the most suitable habitats for the reintroduction, management and conservation of bison populations.


Subject(s)
Behavior, Animal/physiology , Locomotion/physiology , Social Behavior , Animals , Bison , Conservation of Natural Resources , Ecosystem , Female , Male , Models, Biological , Seasons , Snow , Time Factors
20.
Insect Conserv Divers ; 9(6): 495-505, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32336986

ABSTRACT

The habitat requirements of a species are the resources, conditions and space required for survival and reproduction. The habitat requirements of butterflies have been well studied, but the extent to which individuals within a species and between species utilise and share the habitat is poorly known.In a butterfly assemblage in northern Italy, we found that adults from 30 species avoid deciduous high-density forests and their ecotones, and they were positively related to open areas and their ecotones. Besides these common features, five groups of species can be discriminated in relation to a gradient from open area to forest, and species within groups were not equally specialised, as observed from a bipartite network analysis. In particular, some species appeared to be specialised and others appeared to be generalist, suggesting a nested pattern of resource use, rather than a clustered pattern in which each species uses a different subset of habitat types.The degree of variation in specialisation among species varied with the number of species falling in each group. Thus, an increased number of species, and thus possibly competition, is more likely to promote the co-occurrence of generalist and specialised species (nested patterns) rather than an increased niche segregation among species.Ascertaining how species overlap their habitat use at a local scale can be relevant for conservation purposes, because specialised populations are potentially more susceptible to network distortions.

SELECTION OF CITATIONS
SEARCH DETAIL
...