Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Technol ; 58(4): 1894-1907, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38241221

ABSTRACT

Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Plasticizers , Diethylhexyl Phthalate/analysis , Ecosystem , Phthalic Acids/analysis , Plastics , Hazardous Substances/analysis
2.
Mol Metab ; 53: 101311, 2021 11.
Article in English | MEDLINE | ID: mdl-34325016

ABSTRACT

OBJECTIVES: Glucokinase (GCK) is critical for glucosensing. In rats, GCK is expressed in hypothalamic tanycytes and appears to play an essential role in feeding behavior. In this study, we investigated the distribution of GCK-expressing tanycytes in mice and their role in the regulation of energy balance. METHODS: In situ hybridization, reporter gene assay, and immunohistochemistry were used to assess GCK expression along the third ventricle in mice. To evaluate the impact of GCK-expressing tanycytes on arcuate neuron function and mouse physiology, Gck deletion along the ventricle was achieved using loxP/Cre recombinase technology in adult mice. RESULTS: GCK expression was low along the third ventricle, but detectable in tanycytes facing the ventromedial arcuate nucleus from bregma -1.5 to -2.2. Gck deletion induced the death of this tanycyte subgroup through the activation of the BAD signaling pathway. The ablation of GCK-expressing tanycytes affected different aspects of energy balance, leading to an increase in adiposity in mice. This phenotype was systematically associated with a defect in NPY neuron function. In contrast, the regulation of glucose homeostasis was mostly preserved, except for glucoprivic responses. CONCLUSIONS: This study describes the role of GCK in tanycyte biology and highlights the impact of tanycyte loss on the regulation of energy balance.


Subject(s)
Ependymoglial Cells/metabolism , Glucokinase/genetics , Adiposity , Animals , Energy Metabolism , Glucokinase/deficiency , Glucokinase/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
3.
J Comp Neurol ; 529(3): 553-575, 2021 02.
Article in English | MEDLINE | ID: mdl-32515035

ABSTRACT

Tanycytes are highly specialized ependymal cells that line the bottom and the lateral walls of the third ventricle. In contact with the cerebrospinal fluid through their cell bodies, they send processes into the arcuate nucleus, the ventromedial nucleus, and the dorsomedial nucleus of the hypothalamus. In the present work, we combined transgenic and immunohistochemical approaches to investigate the neuroanatomical associations between tanycytes and neural cells present in the hypothalamic parenchyma, in particular in the arcuate nucleus. The specific expression of tdTomato in tanycytes first allowed the observation of peculiar subcellular protrusions along tanycyte processes and at their endfeet such as spines, swelling, en passant boutons, boutons, or claws. Interestingly, these protrusions contact different neural cells in the brain parenchyma including blood vessels and neurons, and in particular NPY and POMC neurons in the arcuate nucleus. Using both fluorescent and electron microscopy, we finally observed that these tanycyte protrusions contain ribosomes, mitochondria, diverse vesicles, and transporters, suggesting dense tanycyte/neuron and tanycyte/blood vessel communications. Altogether, our results lay the neuroanatomical basis for tanycyte/neural cell interactions, which will be useful to further understand cell-to-cell communications involved in the regulation of neuroendocrine functions.


Subject(s)
Ependymoglial Cells/ultrastructure , Hypothalamus/ultrastructure , Neurons/ultrastructure , Parenchymal Tissue/ultrastructure , Animals , Ependymoglial Cells/chemistry , Guinea Pigs , Humans , Hypothalamus/chemistry , Hypothalamus/cytology , Male , Mice , Mice, Transgenic , Neurons/chemistry , Parenchymal Tissue/chemistry , Parenchymal Tissue/cytology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...