Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cosmet Dermatol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590207

ABSTRACT

BACKGROUND: Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS: Although it has been suggested that topical antioxidant may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS: A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS: Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION: This is the first human study confirming the multipollutants cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.

2.
Arch Biochem Biophys ; 752: 109860, 2024 02.
Article in English | MEDLINE | ID: mdl-38110111

ABSTRACT

Mutations in the X-linked methyl-CpG-binding 2 (MECP2) gene lead to Rett Syndrome (RTT; OMIM 312750), a devasting neurodevelopmental disorder. RTT clinical manifestations are complex and with different degrees of severity, going from autistic-like behavior to loss of acquired speech, motor skills and cardiac problems. Furthermore, the correlation between the type of MECP2 mutation and the clinical phenotype is still not fully understood. Contextually, different genotypes can differently affect the patient's phenotype and omics methodologies such as proteomics could be an important tool for a molecular characterization of genotype/phenotype correlation. The aim of our study was focused on evaluating RTT oxidative stress (OS) responses related to specific MECP2 gene mutations by using proteomics and bioinformatics approaches. Primary fibroblasts isolated from patients affected by R133C and R255× mutations were compared to healthy controls (HC). After clustering primary dermal fibroblasts based on their specific MECP2 mutations, fibroblast-derived protein samples were qualitative and quantitative analyzed, using a label free quantification (LFQ) analysis by mass spectrometry (MS), achieving a preliminary correlation for RTT genotype/phenotype. Among the identified proteins involved in redox regulation pathways, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) was found to be absent in R255× cells, while it was present in R133C and in HC fibroblasts. Moreover, NQO1 aberrant gene regulation was also confirmed when cells were challenged with 100 µM hydrogen peroxide (H2O2). In conclusion, by employing a multidisciplinary approach encompassing proteomics and bioinformatics analyses, as well as molecular biology assays, the study uncovered phenotypic responses linked to specific MECP2 gene mutations. These findings contribute to a better understanding of the complexity of RTT molecular pathways, confirming the high heterogeneity among the patients.


Subject(s)
Rett Syndrome , Humans , Hydrogen Peroxide , Methyl-CpG-Binding Protein 2/genetics , Mutation , Oxidation-Reduction , Phenotype , Proteins , Proteomics , Rett Syndrome/genetics
3.
Sci Rep ; 13(1): 16013, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749125

ABSTRACT

Being the more apparent organ exposed to the outdoor stressors, the effect of pollution on the skin has been widely studied in the last few decades. Although UV light is known as the most aggressive stressor to which our cutaneous tissue is daily exposed, other components of the tropospheric pollution have also shown to affect skin health and functionality. Among them, ozone has been proven to be one of the most toxic due to its high reactivity with the epidermal lipids. Studying the cutaneous effect of pollution in a laboratory setting presents challenges, therefore it becomes critical to employ appropriate and tailored models that aim to answer specific questions. Several skin models are available nowadays: in vitro models (2D cell lines and 3D cutaneous tissues), ex vivo skin explants and in vivo approaches (animals and humans). Although in the last 20 years researchers developed skin models that closely resemble human skin (3D cutaneous tissues), ex vivo skin explants still remain one of the best models to study cutaneous responses. Unfortunately, one important cutaneous property that is not present in the traditional ex vivo human skin explants is the physiological tension, which has been shown to be a cardinal player in skin structure, homeostasis, functional properties and responses to external stimuli. For this reason, in this study, to confirm and further comprehend the harmful mechanism of ozone exposure on the integumentary system, we have performed experiments using the state of art in cutaneous models: the innovative TenSkin™ model in which ex vivo human skin explants are cultured under physiologically relevant tension during the whole experimental procedure. Specifically, we were interested in corroborating previous findings showing that ozone exposure modulates the expression of cutaneous antimicrobial peptides (AMPs). The present work demonstrates that cutaneous exposure to ozone induces AMPs gene and protein levels (CAMP/LL-37, hBD2, hBD3) and that the presence of tension can further modulate their expression. In addition, different responses between tension and non-tension cultured skin were also observed during the evaluation of OxInflammatory markers [cyclooxygenase-2 (COX2), aryl hydrocarbon receptor (AhR), matrix-metallo-proteinase 9 (MMP9) and 4-hydroxy-nonenal (4HNE)]. This current study supports our previous findings confirming the ability of pollution to induce the cutaneous expression of AMPs via redox signaling and corroborates the principle that skin explants are a good and reliable model to study skin responses even though it underlines the need to holistically consider the role of skin tension before extrapolating the data to real life.


Subject(s)
Epidermis , Skin , Animals , Humans , Integumentary System , Aggression , Antimicrobial Peptides
4.
Front Genet ; 13: 891418, 2022.
Article in English | MEDLINE | ID: mdl-35774504

ABSTRACT

Recent studies confirmed that people unexposed to SARS-CoV-2 have preexisting reactivity, probably due to previous exposure to widely circulating common cold coronaviruses. Such preexistent reactivity against SARS-CoV-2 comes from memory T cells that can specifically recognize a SARS-CoV-2 epitope of structural and non-structural proteins and the homologous epitopes from common cold coronaviruses. Therefore, it is important to understand the SARS-CoV-2 cross-reactivity by investigating these protein sequence similarities with those of different circulating coronaviruses. In addition, the emerging SARS-CoV-2 variants lead to an intense interest in whether mutations in proteins (especially in the spike) could potentially compromise vaccine effectiveness. Since it is not clear that the differences in clinical outcomes are caused by common cold coronaviruses, a deeper investigation on cross-reactive T-cell immunity to SARS-CoV-2 is crucial to examine the differential COVID-19 symptoms and vaccine performance. Therefore, the present study can be a starting point for further research on cross-reactive T cell recognition between circulating common cold coronaviruses and SARS-CoV-2, including the most recent variants Delta and Omicron. In the end, a deep learning approach, based on Siamese networks, is proposed to accurately and efficiently calculate a BLAST-like similarity score between protein sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...