Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187572

ABSTRACT

Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis ( Mtb ) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR ( virR mut ) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb . We employ genetic, transcriptional, proteomics, ultrastructural and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virR mutant. Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.

2.
Commun Biol ; 5(1): 1228, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369270

ABSTRACT

Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.


Subject(s)
Peptidoglycan , Staphylococcus aureus , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Membrane Proteins/metabolism , Cell Division , Cell Wall/metabolism
3.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716264

ABSTRACT

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Subject(s)
Cell Wall/physiology , Peptidoglycan/metabolism , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Homeostasis , Methicillin/pharmacology , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Vancomycin/pharmacology
4.
ACS Nano ; 15(10): 16011-16018, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34533301

ABSTRACT

Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using "clickable" d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers.


Subject(s)
Bacillus subtilis , Cell Wall , Microscopy, Atomic Force , Microscopy, Fluorescence , Peptidoglycan
5.
ACS Synth Biol ; 9(7): 1599-1607, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32551507

ABSTRACT

Protein engineering is an attractive approach for the self-assembly of nanometer-scale architectures for a range of potential nanotechnologies. Using the versatile chemistry provided by protein folding and assembly, coupled with amino acid side-chain functionality, allows for the construction of precise molecular "protein origami" hierarchical patterned structures for a range of nanoapplications such as stand-alone enzymatic pathways and molecular machines. The Staphyloccocus aureus surface protein SasG is a rigid, rod-like structure shown to have high mechanical strength due to "clamp-like" intradomain features and a stabilizing interface between the G5 and E domains, making it an excellent building block for molecular self-assembly. Here we characterize a new two subunit system composed of the SasG rod protein genetically conjugated with de novo designed coiled-coils, resulting in the self-assembly of fibrils. Circular dichroism (CD) and quartz-crystal microbalance with dissipation (QCM-D) are used to show the specific, alternating binding between the two subunits. Furthermore, we use atomic force microscopy (AFM) to study the extent of subunit polymerization in a liquid environment, demonstrating self-assembly culminating in the formation of linear macromolecular fibrils.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Protein Engineering , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Circular Dichroism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Microscopy, Atomic Force , Protein Domains , Protein Folding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Quartz Crystal Microbalance Techniques , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Staphylococcus aureus/metabolism
6.
Nanoscale ; 10(48): 23001-23011, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30500043

ABSTRACT

Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.

SELECTION OF CITATIONS
SEARCH DETAIL
...