Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 37(45): 13444-13451, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34726919

ABSTRACT

The lifetimes of single bubbles or foams that are formed in mixtures of liquids can be several orders of magnitude larger than the ones formed in pure liquids. We recently demonstrated that this enhanced stability results from differences between bulk and interfacial concentrations in the mixture, which induce a thickness dependence of the surface tension in liquid films, and thus a stabilizing Marangoni effect. Concentration differences may be associated with nonlinear variations of surface tension with composition and we further investigate their link with foamability of binary mixtures. We show that, for asymmetric binary mixtures, that is, made of molecules of very different sizes, strong nonlinearities in surface tension can be measured, that are associated with large foam lifetimes. When the molecules that occupy the largest surface areas have the smallest surface tension, the surface tension of the mixture varies sublinearly with composition, reflecting an enrichment in this species at the interface with air, as classically reported in the literature. In contrast, when they exhibit the largest surface tension, superlinear variations of surface tension are observed, despite a similar enrichment. We discuss these variations in light of a simple thermodynamic model for ideal mixtures and we demonstrate why foam stability is enhanced for both sublinear and superlinear surface tension variations, thus, shedding new light on foamability without added surfactants.

2.
Phys Rev Lett ; 125(17): 178002, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156645

ABSTRACT

The formation of froth in mixtures of liquids is well documented, particularly in oil mixtures. However, in nonvolatile liquids and in the absence of surface-active molecules, the origin of increased liquid film lifetimes had not been identified. We suggest a stabilizing mechanism resulting from the nonlinear variations of the surface tension of a liquid mixture with its composition. We report on experimental lifetimes of froths in binary mixtures and show that their variations are well predicted by the suggested mechanism. We demonstrate that it prescribes the thickness reached by films before their slow drainage, a thickness which correlates well with froth lifetimes for both polar and nonpolar liquids.

3.
J Colloid Interface Sci ; 531: 693-704, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30077129

ABSTRACT

HYPOTHESIS: Adsorption of high molar mass polymers impacts flow in porous media. In the industrially crucial case of acrylamide-based polymers in porous silicates, the very occurrence of adsorption is still debated. Thus, the present work aimed at establishing a clear correlation between adsorption of acrylamide-based polymers and injectivity loss in porous silica. EXPERIMENTS: A review of the literature revealed apparent discrepancies regarding the affinity of acrylamide-based polymers for siliceous materials having ostensibly the same chemical composition. Through a deeper analysis of the reported literature and new experimental measurements on well-defined polymers and surfaces, we investigated the relation between the silica surface properties and the acrylamide-based polymer adsorption. Our observations were confronted with water injection experiments in porous media of different surface compositions previously put in contact with polymers. FINDINGS: The polymer affinity towards the silica surface depended on the density of hydroxyl groups at the surface of the oxide, its thermal treatment, storage condition and purity. This demonstrated that the impact of adsorption on acrylamide-based polymer flow within porous silicates heavily depends on the silicate surface composition and must be carefully evaluated. In view of the continually expanding use of acrylamide-based polymers, notably in enhanced oil recovery, such considerations provide interesting insights into the effect of adsorption on their flow into porous materials.

SELECTION OF CITATIONS
SEARCH DETAIL