Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233738

ABSTRACT

Polymer Electrolyte Fuel Cells (PEFCs) are one of the most promising power generation systems. The main component of a PEFC is the proton exchange membrane (PEM), object of intense research to improve the efficiency of the cell. The most commonly and commercially successful used PEMs are Nafion™ perfluorosulfonic acid (PFSA) membranes, taken as a reference for the development of innovative and alternative membranes. Usually, these membranes undergo different pre-treatments to enhance their characteristics. With the aim of understanding the utility and the effects of such pre-treatments, in this study, a commercial Nafion™ NR212 membrane was subjected to two different chemical pre-treatments, before usage. HNO3 or H2O2 were selected as chemical agents because the most widely used ones in the procedure protocols in order to prepare the membrane in a well-defined reference state. The pre-treated membranes properties were compared to an untreated membrane, used as-received. The investigation has showed that the pre-treatments enhance the hydrophilicity and increase the water molecules coordinated to the sulphonic groups in the membrane structure, on the other hand the swelling of the membranes also increases. As a consequence, the untreated membrane shows a better mechanical resistance, a good electrochemical performance and durability in fuel cell operations, orienting toward the use of the NR212 membrane without any chemical pre-treatment.

2.
J Nanosci Nanotechnol ; 11(10): 8768-74, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22400257

ABSTRACT

The introduction of different reinforcement materials (yarns, fibrils, etc) into the membranes has been investigated with the aim of maintaining adequate membrane properties in terms of mechanical strength, good chemical stability, low swelling at critical temperatures and a stable electrochemical performance in PEFC. An innovative technique for the development of membranes is based on polymeric films containing polymeric nanofibres obtained through electrospinning. The electrospinning of Nafion blends with polyvinylpirrolidone (PVP) and polystyrene (PS) was investigated in this work. In particular, the morphology and diameter of electrospun fibres as a function of the electrospinning parameters and solution preparation have been studied and in both cases, a critical concentration of blend solution was found. Beaded fibres were obtained above such a concentration and, below it, only fibre mats were observed. Reinforced Nafion-based membranes were realised by using the obtained spun films. Preliminary proton conductivity and fuel cell results have shown the capability of operating in a fuel cell environment with a slightly higher performance than pure Nafion but having an improved stability at high temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...