Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38738312

ABSTRACT

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the pre-implantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers Connexin-43, insulin like growth factor binding protein 1 (IGFBP1) and Prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on ECM remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of Prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.

2.
Histol Histopathol ; 38(8): 849-863, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36661064

ABSTRACT

Embryo implantation is a complex and highly coordinated process that involves an intricate network of factors establishing intimate contact at the maternal-fetal interface. Knowledge of the human implantation process is compromised by both ethical issues, which do not allow the study of this process in vivo, and by the accuracy and reproducibility of in vitro models of human endometrium. Effective and reliable embryo implantation models are, therefore, necessary to mimic the molecular event cascade that occurs in vivo. 3D models are considered a new step to foster precision medicine and an advanced tool for the study of endometrial biology, endometrium associated diseases and to understand the complex mechanisms surrounding endometrium-embryo crosstalk. In this review we explore the various methods by which 3D cultures of endometrium and trophoblast can be created, exploring targets and applications of these in vitro models.


Subject(s)
Embryo Implantation , Trophoblasts , Female , Humans , Reproducibility of Results , Endometrium
3.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555195

ABSTRACT

Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system.


Subject(s)
Endocrine Disruptors , Taste , Humans , Male , Female , Endocrine Disruptors/toxicity , Receptors, G-Protein-Coupled/metabolism , Caffeine/pharmacology , Semen/metabolism , Granulosa Cells/metabolism
4.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291063

ABSTRACT

Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 µg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.


Subject(s)
Benzhydryl Compounds , Exosomes , Fetal Blood , Glucose Transporter Type 1 , Myocardium , Phenols , Animals , Female , Pregnancy , Rats , Exosomes/drug effects , Exosomes/metabolism , Fatty Acids/metabolism , Fetal Blood/drug effects , Fetal Blood/metabolism , Fetus/metabolism , Glucose Transporter Type 1/metabolism , Myocardium/metabolism , Benzhydryl Compounds/adverse effects , Phenols/adverse effects , Diet
5.
Cells ; 11(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35456036

ABSTRACT

Women with multiple sclerosis (MS) can safely become pregnant and give birth, with no side effects or impediments. Pregnancy is generally accepted as a period of well-being in which relapses have a softer evolution, particularly in the third trimester. Herein, we hypothesized that the placenta, via its "secretome", could contribute to the recognized beneficial effects of pregnancy on MS activity. We focused on a well-known receptor/ligand/decoy receptor system, such as the one composed by the receptor activator of nuclear factor-kB (RANK), its ligand (RANKL), and the decoy receptor osteoprotegerin (OPG), which have never been investigated in an integrated way in MS, pregnancy, and placenta. We reported that pregnancy at the term of gestation influences the balance between circulating RANKL and its endogenous inhibitor OPG in MS women. We demonstrated that the placenta at term is an invaluable source of homodimeric OPG. By functional studies on astrocytes, we showed that placental OPG suppresses the mRNA expression of the CCL20, a chemokine responsible for Th17 cell recruitment. We propose placental OPG as a crucial molecule for the recognized beneficial effect of late pregnancy on MS and its potential utility for the development of new and more effective therapeutic approaches.


Subject(s)
Multiple Sclerosis , Female , Humans , Ligands , Multiple Sclerosis/metabolism , Osteoprotegerin/metabolism , Placenta/metabolism , Pregnancy , Protein Binding , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism
6.
Cells ; 10(11)2021 11 11.
Article in English | MEDLINE | ID: mdl-34831350

ABSTRACT

Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility.


Subject(s)
Cumulus Cells/metabolism , Fertility/physiology , Granulosa Cells/metabolism , Taste , Adult , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Protein Interaction Maps , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Taste/genetics
7.
Tissue Cell ; 73: 101630, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34454366

ABSTRACT

During pregnancy, both the maternal endometrium and the blastocyst have highly glycosylated proteins with glycosylations controlled in a specific manner. Carbohydrates play a fundamental role in cell-cell and cell-matrix recognition and are involved in defining the structure and integrity of tissues. The uterus' secretions, which are rich in glycoproteins and glycogen and the presence of a functional glycocalyx on the uterine epithelium, establish a favourable milieu, which is essential for the correct implantation and subsequent development of the blastocyst. Likewise, carbohydrate residues such as fucose and sialic acid present at the placental level are determinant in creating an immuno-environment, which supports the mother's tolerance towards the fetal antigens. In this review, we explore the literature concerning the role of important glycan-epitopes at the feto-maternal interface in the human species. Moreover, we also show some unpublished interesting results on changes of glycan residues in human placenta tissues from the first trimester of pregnancy.


Subject(s)
Maternal-Fetal Exchange , Polysaccharides/metabolism , Endometrium/metabolism , Female , Glycosylation , Humans , Lectins/metabolism , Placenta/metabolism , Polysaccharides/chemistry , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...