Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38407397

ABSTRACT

A reservoir computer is a machine learning model that can be used to predict the future state(s) of time-dependent processes, e.g., dynamical systems. In practice, data in the form of an input-signal are fed into the reservoir. The trained reservoir is then used to predict the future state of this signal. We develop a new method for not only predicting the future dynamics of the input-signal but also the future dynamics starting at an arbitrary initial condition of a system. The systems we consider are the Lorenz, Rossler, and Thomas systems restricted to their attractors. This method, which creates a global forecast, still uses only a single input-signal to train the reservoir but breaks the signal into many smaller windowed signals. We examine how well this windowed method is able to forecast the dynamics of a system starting at an arbitrary point on a system's attractor and compare this to the standard method without windows. We find that the standard method has almost no ability to forecast anything but the original input-signal while the windowed method can capture the dynamics starting at most points on an attractor with significant accuracy.

2.
Nat Commun ; 12(1): 3151, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035240

ABSTRACT

Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.


Subject(s)
Alpha Rhythm/physiology , Thalamus/physiology , Transcranial Direct Current Stimulation/methods , Visual Cortex/physiology , Animals , Computer Simulation , Electrodes, Implanted , Electroencephalography , Female , Ferrets , Interneurons/physiology , Magnetic Resonance Imaging , Male , Microelectrodes , Models, Animal , Models, Neurological , Nerve Net/physiology , Optogenetics , Thalamus/cytology , Thalamus/diagnostic imaging , Tomography, X-Ray Computed , Transcranial Direct Current Stimulation/instrumentation , Visual Cortex/cytology , Visual Cortex/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...