Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Cybern ; 107(3): 263-88, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23559034

ABSTRACT

Since the cell assembly (CA) was hypothesised, it has gained substantial support and is believed to be the neural basis of psychological concepts. A CA is a relatively small set of connected neurons, that through neural firing can sustain activation without stimulus from outside the CA, and is formed by learning. Extensive evidence from multiple single unit recording and other techniques provides support for the existence of CAs that have these properties, and that their neurons also spike with some degree of synchrony. Since the evidence is so broad and deep, the review concludes that CAs are all but certain. A model of CAs is introduced that is informal, but is broad enough to include, e.g. synfire chains, without including, e.g. holographic reduced representation. CAs are found in most cortical areas and in some sub-cortical areas, they are involved in psychological tasks including categorisation, short-term memory and long-term memory, and are central to other tasks including working memory. There is currently insufficient evidence to conclude that CAs are the neural basis of all concepts. A range of models have been used to simulate CA behaviour including associative memory and more process- oriented tasks such as natural language parsing. Questions involving CAs, e.g. memory persistence, CAs' complex interactions with brain waves and learning, remain unanswered. CA research involves a wide range of disciplines including biology and psychology, and this paper reviews literature directly related to the CA, providing a basis of discussion for this interdisciplinary community on this important topic. Hopefully, this discussion will lead to more formal and accurate models of CAs that are better linked to neuropsychological data.


Subject(s)
Association Learning/physiology , Memory/physiology , Models, Neurological , Neurons/physiology , Animals , Humans
2.
Philos Trans A Math Phys Eng Sci ; 367(1900): 3121-48, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19581258

ABSTRACT

Multidimensional tomographic datasets contain physical properties defined over four-dimensional (e.g. spatial-temporal, spatial-spectral), five-dimensional (e.g. spatial-temporal-spectral) or even higher-dimensional domains. Multimodal tomographic datasets contain physical properties obtained with different imaging modalities. In medicine, four-dimensional data are widely used, five-dimensional data are emerging, and multimodal data are being used more often every day. Visualization is vital for medical diagnosis and surgical planning to interpret the information included in imaging data. Visualization of multidimensional and multimodal tomographic imaging data is still a challenging task. As a case study, our work focuses on the visualization of five-dimensional (spatial-temporal-spectral) brain electrical impedance tomography (EIT) data. In this paper, a task-based subset definition scheme is proposed: a task model named Cubic Task Explorer (CTE) is derived to support the visualization task exploration for medical imaging data, and a structured method for visualization system development called Task-based Multi-Dimensional Visualization (TMDV) is proposed. A prototype system named EIT5DVis is developed using the CTE model and TMDV method to visualize five-dimensional brain EIT data.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Biological , Tomography/methods , Brain/physiology , Electric Impedance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...