Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 128: 110704, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34482226

ABSTRACT

Pathological platelet activation by abnormal shear stresses is regarded as a main clinical complication in recipients of cardiovascular mechanical devices. In order to improve their performance computational fluid dynamics (CFD) are used to evaluate flow fields and related shear stresses. CFD models are coupled with mathematical models that describe the relation between fluid dynamics variables, and in particular shear stresses, and the platelet activation state (PAS). These models typically use a Lagrangian approach to compute the shear stresses along possible platelet trajectories. However, in the case of turbulent flow, the choice of the proper turbulence closure is still debated for both concerning its effect on shear stress calculation and Lagrangian statistics. In this study different numerical simulations of the flow through a mechanical heart valve were performed and then compared in terms of Eulerian and Lagrangian quantities: a direct numerical simulation (DNS), a large eddy simulation (LES), two Reynolds-averaged Navier-Stokes (RANS) simulations (SST k-ω and RSM) and a "laminar" (no turbulence modelling) simulation. Results exhibit a large variability in the PAS assessment depending on the turbulence model adopted. "Laminar" and RSM estimates of platelet activation are about 60% below DNS, while LES is 16% less. Surprisingly, PAS estimated from the SST k- ω velocity field is only 8% less than from DNS data. This appears more artificial than physical as can be inferred after comparing frequency distributions of PAS and of the different Lagrangian variables of the mechano-biological model of platelet activation. Our study indicates how much turbulence closures may affect platelet activation estimates, in comparison to an accurate DNS, when assessing blood damage in blood contacting devices.


Subject(s)
Hydrodynamics , Models, Theoretical , Computer Simulation , Models, Cardiovascular , Platelet Activation , Stress, Mechanical
2.
Comput Methods Biomech Biomed Engin ; 20(10): 1104-1112, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28553722

ABSTRACT

This study investigates the impact that uncertainty in phase contrast-MRI derived inlet boundary conditions has on patient-specific computational hemodynamics models of the healthy human thoracic aorta. By means of Monte Carlo simulations, we provide advice on where, when and how, it is important to account for this source of uncertainty. The study shows that the uncertainty propagates not only to the intravascular flow, but also to the shear stress distribution at the vessel wall. More specifically, the results show an increase in the uncertainty of the predicted output variables, with respect to the input uncertainty, more marked for blood pressure and wall shear stress. The methodological approach proposed here can be easily extended to study uncertainty propagation in both healthy and pathological computational hemodynamic models.


Subject(s)
Aorta, Thoracic/physiology , Hemodynamics , Magnetic Resonance Imaging , Models, Cardiovascular , Uncertainty , Adult , Aorta , Blood Pressure , Computer Simulation , Humans , Male , Microscopy, Phase-Contrast , Monte Carlo Method , Signal-To-Noise Ratio , Stress, Mechanical
3.
Phys Rev Lett ; 92(19): 194503, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15169409

ABSTRACT

Turbulent Rayleigh-Bénard convection produces fields of intense updrafts and downdrafts that are responsible for much of the vertical heat transport. These structures, called plumes or thermals, have horizontal scales comparable to the thicknesses of the boundary layers in which they arise. In the three-dimensional numerical simulations reported here, we have observed that convective plumes organize themselves into clusters with horizontal scales that grow with time and reach the width of the computational domain. In this two-scale process, kinetic energy is transferred mainly to low horizontal wave numbers while the sizes of individual plumes remain on the scale of the boundary layer thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...