Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(44): eadi7347, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922348

ABSTRACT

Prion diseases are characterized by prion protein (PrP) transmissible aggregation and neurodegeneration, which has been linked to oxidative stress. The physiological function of PrP seems related to sequestering of redox-active Cu2+, and Cu2+ dyshomeostasis is observed in prion disease brain. It is unclear whether Cu2+ contributes to PrP aggregation, recently shown to be mediated by PrP condensation. This study indicates that Cu2+ promotes PrP condensation in live cells at the cell surface and in vitro through copartitioning. Molecularly, Cu2+ inhibited PrP ß-structure and hydrophobic residues exposure. Oxidation, induced by H2O2, triggered liquid-to-solid transition of PrP:Cu2+ condensates and promoted amyloid-like PrP aggregation. In cells, overexpression of PrPC initially protected against Cu2+ cytotoxicity but led to PrPC aggregation upon extended copper exposure. Our data suggest that PrP condensates function as a buffer for copper that prevents copper toxicity but can transition into PrP aggregation at prolonged oxidative stress.


Subject(s)
Prion Proteins , Prions , Copper/chemistry , Hydrogen Peroxide , Prions/chemistry , Prions/metabolism
2.
Phys Chem Chem Phys ; 22(34): 18835-18848, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32175551

ABSTRACT

The understanding of phase transformation upon activation, reaction and deactivation of catalysts is of prime importance for tailoring catalysts with better performances. Herein we combined Quick-EXAFS and Raman spectroscopies in operando conditions through the monitoring of reaction products by mass spectrometry in order to study in depth active species and deactivating ones for Ethanol Steam Reforming reaction. Quick-EXAFS data analyzed by multivariate analysis allows one to determine the nickel and copper species involved during the activation of a Ni-Cu hydrotalcite-like precursors. Upon reaction and regeneration monitoring, Raman spectroscopy combined with mass spectrometry highlights the side products formed upon ESR leading to the formation of amorphous coke species encapsulating active metallic species and inducing catalyst deactivation. The coke encapsulation of active species was demonstrated by the simultaneous observation of oxidation of nickel and copper as soon as the amorphous coke was burnt by the oxidative regeneration treatment. Formation of filamentous coke species is also confirmed as causing little impact in catalyst deactivation.

3.
Nanoscale Adv ; 1(8): 3009-3014, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133615

ABSTRACT

The chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an in situ 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions. In situ/operando defect dynamics imaging paves the way to elucidate chemical processes at the single nano-object level towards defect-engineered nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...