Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 96(2): e29455, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323709

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Immunity, Innate , Neurons
2.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34078739

ABSTRACT

Interferon-induced transmembrane (IFITM) proteins restrict membrane fusion and virion internalization of several enveloped viruses. The role of IFITM proteins during alphaviral infection of human cells and viral counteraction strategies are insufficiently understood. Here, we characterized the impact of human IFITMs on the entry and spread of chikungunya virus and Mayaro virus and provide first evidence for a CHIKV-mediated antagonism of IFITMs. IFITM1, 2, and 3 restricted infection at the level of alphavirus glycoprotein-mediated entry, both in the context of direct infection and cell-to-cell transmission. Relocalization of normally endosomal IFITM3 to the plasma membrane resulted in loss of antiviral activity. rs12252-C, a naturally occurring variant of IFITM3 that may associate with severe influenza in humans, restricted CHIKV, MAYV, and influenza A virus infection as efficiently as wild-type IFITM3 Antivirally active IFITM variants displayed reduced cell surface levels in CHIKV-infected cells involving a posttranscriptional process mediated by one or several nonstructural protein(s) of CHIKV. Finally, IFITM3-imposed reduction of specific infectivity of nascent particles provides a rationale for the necessity of a virus-encoded counteraction strategy against this restriction factor.


Subject(s)
Alphavirus Infections/prevention & control , Chikungunya Fever/prevention & control , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Alphavirus/pathogenicity , Alphavirus Infections/metabolism , Alphavirus Infections/virology , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Chikungunya Fever/metabolism , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Endosomes/metabolism , Humans , Membrane Proteins/physiology , RNA-Binding Proteins/physiology , Virus Internalization
3.
Mol Cell Proteomics ; 18(12): 2401-2417, 2019 12.
Article in English | MEDLINE | ID: mdl-31570497

ABSTRACT

Novel tick-borne phleboviruses in the Phenuiviridae family, which are highly pathogenic in humans and all closely related to Uukuniemi virus (UUKV), have recently emerged on different continents. How phleboviruses assemble, bud, and exit cells remains largely elusive. Here, we performed high-resolution, label-free mass spectrometry analysis of UUKV immunoprecipitated from cell lysates and identified 39 cellular partners interacting with the viral envelope glycoproteins. The importance of these host factors for UUKV infection was validated by silencing each host factor by RNA interference. This revealed Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1), a guanine nucleotide exchange factor resident in the Golgi, as a critical host factor required for the UUKV life cycle. An inhibitor of GBF1, Golgicide A, confirmed the role of the cellular factor in UUKV infection. We could pinpoint the GBF1 requirement to UUKV replication and particle assembly. When the investigation was extended to viruses from various positive and negative RNA viral families, we found that not only phleboviruses rely on GBF1 for infection, but also Flavi-, Corona-, Rhabdo-, and Togaviridae In contrast, silencing or blocking GBF1 did not abrogate infection by the human adenovirus serotype 5 and immunodeficiency retrovirus type 1, the replication of both requires nuclear steps. Together our results indicate that UUKV relies on GBF1 for viral replication, assembly and egress. This study also highlights the proviral activity of GBF1 in the infection by a broad range of important zoonotic RNA viruses.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Uukuniemi virus/physiology , Animals , Antiviral Agents/pharmacology , Bunyaviridae Infections/virology , Cell Line, Tumor , Chlorocebus aethiops , Glycoproteins/metabolism , Host Microbial Interactions , Humans , Mass Spectrometry , Proteomics , Pyridines/pharmacology , Quinolines/pharmacology , RNA Interference , RNA Viruses/physiology , Uukuniemi virus/drug effects , Vero Cells , Viral Envelope Proteins/metabolism , Virus Release , Virus Replication
4.
J Virol ; 93(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31597782

ABSTRACT

When expressed in virus-producing cells, the cellular multipass transmembrane protein SERINC5 reduces the infectivity of HIV-1 particles and is counteracted by HIV-1 Nef. Due to the unavailability of an antibody of sufficient specificity and sensitivity, investigation of SERINC5 protein expression and subcellular localization has been limited to heterologously expressed SERINC5. We generated, via CRISPR/Cas9-assisted gene editing, Jurkat T-cell clones expressing endogenous SERINC5 bearing an extracellularly exposed hemagglutinin (HA) epitope [Jurkat SERINC5(iHA knock-in) T cells]. This modification enabled quantification of endogenous SERINC5 protein levels and demonstrated a predominant localization in lipid rafts. Interferon alpha (IFN-α) treatment enhanced cell surface levels of SERINC5 in a ruxolitinib-sensitive manner in the absence of modulation of mRNA and protein quantities. Parental and SERINC5(iHA knock-in) T cells shared the ability to produce infectious wild-type HIV-1 but not an HIV-1 Δnef mutant. SERINC5-imposed reduction of infectivity involved a modest reduction of virus fusogenicity. An association of endogenous SERINC5 protein with HIV-1 Δnef virions was consistently detectable as a 35-kDa species, as opposed to heterologous SERINC5, which presented as a 51-kDa species. Nef-mediated functional counteraction did not correlate with virion exclusion of SERINC5, arguing for the existence of additional counteractive mechanisms of Nef that act on virus-associated SERINC5. In HIV-1-infected cells, Nef triggered the internalization of SERINC5 in the absence of detectable changes of steady-state protein levels. These findings establish new properties of endogenous SERINC5 expression and subcellular localization, challenge existing concepts of HIV-1 Nef-mediated antagonism of SERINC5, and uncover an unprecedented role of IFN-α in modulating SERINC5 through accumulation at the cell surface.IMPORTANCE SERINC5 is the long-searched-for antiviral factor that is counteracted by the HIV-1 accessory gene product Nef. Here, we engineered, via CRISPR/Cas9 technology, T-cell lines that express endogenous SERINC5 alleles tagged with a knocked-in HA epitope. This genetic modification enabled us to study basic properties of endogenous SERINC5 and to verify proposed mechanisms of HIV-1 Nef-mediated counteraction of SERINC5. Using this unique resource, we identified the susceptibility of endogenous SERINC5 protein to posttranslational modulation by type I IFNs and suggest uncoupling of Nef-mediated functional antagonism from SERINC5 exclusion from virions.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/drug effects , Membrane Proteins/metabolism , Membrane Proteins/pharmacology , CRISPR-Cas Systems , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Editing , Gene Expression Regulation , Gene Knockout Techniques , Genotype , HEK293 Cells , HIV Infections/virology , Host-Pathogen Interactions/physiology , Humans , Interferon-alpha , Membrane Proteins/genetics , Nitriles , Pyrazoles/pharmacology , Pyrimidines , T-Lymphocytes/virology , Virion/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
5.
PLoS Pathog ; 14(8): e1007269, 2018 08.
Article in English | MEDLINE | ID: mdl-30125328

ABSTRACT

SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Products, nef/physiology , HIV-1/physiology , Lymphoid Tissue/virology , Membrane Proteins/metabolism , Virus Replication/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Colobus/virology , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Simian Immunodeficiency Virus/genetics
6.
J Infect Dis ; 218(9): 1507-1510, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29917109

ABSTRACT

Despite increasing clinical relevance of Chikungunya virus (CHIKV) infection, caused by a rapidly emerging pathogen, recommended guidelines for its inactivation do not exist. In this study, we investigated the susceptibility of CHIKV to inactivation by heat and commercially available hand, surface, and World Health Organization-recommended disinfectants to define CHIKV prevention protocols for healthcare systems.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/drug effects , Disinfectants/pharmacology , Cell Line , HEK293 Cells , Hot Temperature , Humans , World Health Organization
7.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29743357

ABSTRACT

Cellular antiviral proteins interfere with distinct steps of replication cycles of viruses. The galectin 3 binding protein (LGALS3BP, also known as 90K) was previously shown to lower the infectivity of nascent human immunodeficiency virus type 1 (HIV-1) virions when expressed in virus-producing cells. This antiviral effect was accompanied by impaired gp160Env processing and reduced viral incorporation of mature Env glycoproteins. Here, we examined the ability of 90K orthologs from primate species to reduce the particle infectivity of distinct lentiviruses. We show that 90K's ability to diminish the infectivity of lentiviral particles is conserved within primate species, with the notable exception of 90K from rhesus macaque. Comparison of active and inactive 90K orthologs and variants uncovered the fact that inhibition of processing of the HIV-1 Env precursor and reduction of cell surface expression of HIV-1 Env gp120 are required, but not sufficient, for 90K-mediated antiviral activity. Rather, 90K-mediated reduction of virion-associated gp120 coincided with antiviral activity, suggesting that 90K impairs the incorporation of HIV-1 Env into budding virions. We show that a single "humanizing" amino acid exchange in the BTB (broad-complex, tramtrack, and bric-à-brac)/POZ (poxvirus and zinc finger) domain is sufficient to fully rescue the antiviral activity of a shortened version of rhesus macaque 90K, but not that of the full-length protein. Comparison of the X-ray structures of the BTB/POZ domains of 90K from rhesus macaques and humans point toward a slightly larger hydrophobic patch at the surface of the rhesus macaque BTB domain that may modulate a direct interaction with either a second 90K domain or a different protein.IMPORTANCE The cellular 90K protein has been shown to diminish the infectivity of nascent HIV-1 particles. When produced in 90K-expressing cells, particles bear smaller amounts of the HIV-1 Env glycoprotein, which is essential for attaching to and entering new target cells in the subsequent infection round. However, whether the antiviral function of 90K is conserved across primates is unknown. Here, we found that 90K orthologs from most primate species, but, surprisingly, not from rhesus macaques, inhibit HIV-1. The introduction of a single amino acid exchange into a short version of the rhesus macaque 90K protein, consisting of the two intermediate domains of 90K, resulted in full restoration of antiviral activity. Structural elucidation of the respective domain suggests that the absence of antiviral activity in the rhesus macaque factor may be linked to a subtle change in protein-protein interaction.


Subject(s)
Antigens, Neoplasm/pharmacology , Antiviral Agents/pharmacology , Biomarkers, Tumor/pharmacology , Carrier Proteins/pharmacology , Glycoproteins/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Amino Acid Sequence , Animals , Antigens, Neoplasm/chemistry , Biomarkers, Tumor/chemistry , Carrier Proteins/chemistry , Gene Products, env/metabolism , Glycoproteins/chemistry , HIV Infections/virology , Humans , Macaca mulatta , Protein Conformation , Sequence Homology , Simian Acquired Immunodeficiency Syndrome/virology , Species Specificity , Virus Assembly/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...