Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 247: 242-252, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247371

ABSTRACT

Streams draining urban catchments ubiquitously undergo negative physical and ecosystem changes, recognized to be primarily driven by frequent stormwater runoff input. The common management intervention is rehabilitation of channel morphology. Despite engineering design intentions, ecohydraulic benefits of urban channel rehabilitation are largely unknown and likely limited. This investigation uses an ecohydraulic modeling approach to investigate the performance of alternative channel design configurations intended to restore key ecosystem functioning in urban streams. Channel reconfiguration design scenarios, specified to emulate the range of channel topographic complexity often used in rehabilitation are compared against a reference 'natural' scenario using ecologically relevant hydraulic metrics. The results showed that the ecohydraulic conditions were incremental improved with the addition of natural oscillations to an increasing number of individual topographic variables in a degraded channel. Results showed that reconfiguration reduced excessive frequency of bed mobility, loss of habitat and hydraulic diversity particularly as more topographic variables were added. However, the results also showed that none of the design scenarios returned the ecohydraulics to their reference conditions. This indicate that channel-based restoration can offer some potential changes to hydraulic habitat conditions but are unlikely to completely mitigate the effects of hydrologic change. We suggest that while reach-scale channel modification may be beneficial to restore urban stream, addressing altered hydrology is critical to fully recover natural ecosystem processes.


Subject(s)
Ecosystem , Rivers , Hydrology
2.
J Environ Manage ; 233: 1-11, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30551024

ABSTRACT

The potential for catchment-scale stormwater control measures (SCMs) to mitigate the impact of stormwater runoff issues and excess stormwater volume is increasingly recognised. There is, however, limited understanding about their potential in reducing in-channel disturbance and improving hydraulic conditions for stream ecosystem benefits. This study investigates the benefits that SCM application in a catchment have on in-stream hydraulics. To do this, a two-dimensional hydraulic model was employed to simulate the stream hydraulic response to scenarios of SCM application applied in an urban catchment to return towards pre-development hydrologic pulses. The hydraulic response analysis considered three hydraulic metrics associated with key components of stream ecosystem functions: benthic mobilization, hydraulic diversity and retentive habitat availability. The results showed that when applied intensively, the developed SCM scenarios could effectively restore the in-stream hydraulics to close to natural levels. Compared to an unmanaged urban case (no SCMs), SCM scenarios yielded channels with reduced bed mobility potential, close to natural hydraulic diversity and improvement of retentive habitat availability. This indicates that mitigating the effect of stormwater driven hydrological change could result in significant improvements in the physical environment to better support ecosystem functioning. We therefore suggest that intensive implementation of SCMs is an important action in an urbanizing catchment to maintain the flow regime and hydraulic conditions that sustain the 'natural' stream habitat functioning. We propose that stormwater management and protection of stream ecosystem processes should incorporate hydraulic metrics to measure the effectiveness of management strategies.


Subject(s)
Rain , Rivers , Ecosystem , Hydrology , Water Movements
3.
J Environ Qual ; 47(5): 985-996, 2018 09.
Article in English | MEDLINE | ID: mdl-30272806

ABSTRACT

Increased public health risk caused by pathogen contamination in streams is a serious issue, and mitigating the risk requires improvement in existing microbial monitoring of streams. To improve understanding of microbial contamination in streams, we monitored in stream water columns and streambed sediment. Two distinct streams and their subwatersheds were studied: (i) a mountain stream (Merced River, California), which represents pristine and wild conditions, and (ii) an agricultural stream (Squaw Creek, Iowa), which represents an agricultural setting (i.e., crop, manure application, cattle access). Stream water column and sediment samples were collected in multiple locations in the Merced River and Squaw Creek watersheds. Compared with the mountain stream, water column concentrations in the agricultural stream were considerably higher. In both mountain and agricultural streams, concentrations in bed sediment were higher than the water column, and principal component analysis indicates that land use affected water column levels significantly ( < 0.05). The cluster analysis showed grouping of subwatersheds for each basin, indicating unique land use features of each watershed. In general, water column levels in the mountain stream were lower than the USEPA's existing water quality criteria for bacteria. However, the levels in the agricultural stream exceeded the USEPA's microbial water quality criteria by several fold, which substantiated that increased agricultural activities, use of animal waste as fertilizers, and combined effect of rainfall and temperature may act as potential determining factors behind the elevated levels in agriculture streams.


Subject(s)
Rivers , Water , Agriculture , Animals , California , Cattle , Iowa , Water Quality
4.
Environ Manage ; 62(4): 678-693, 2018 10.
Article in English | MEDLINE | ID: mdl-29934651

ABSTRACT

Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.


Subject(s)
Climate Change , Conservation of Water Resources/methods , Environmental Monitoring/methods , Hydrology , Water Resources/supply & distribution , Water Supply/statistics & numerical data , California , Databases, Factual , Humans , Rivers , Water Movements , Water Supply/standards
5.
AMB Express ; 8(1): 100, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29923143

ABSTRACT

Improved understanding of pathogen survival in the stream environment is needed to enhance existing predictive models of stream pathogen populations. Further, the increasing use of thermal springs for bathing necessitates additional studies focused on not only typical streams but also thermal spring conditions, where water temperature is relatively higher than typical streams. This study was conducted to assess the survival of E. coli O157:H7 and Salmonella Typhimurium in stream water under free floating and particle-attached conditions at a range of temperature. A series of microcosm studies were conducted to determine pathogen decay rates. In bench-scale experiments, water circulation and sediment resuspension mimicked natural stream and thermal spring conditions, with continuous air flow providing aeration, constant mixing and turbulent conditions, and improved water circulation. Data on E. coli O157:H7 and Salmonella survival were subsequently used to determine first-order decay equations for calculating the rate constant and decimal reduction time for the modeled experimental conditions. Results showed that at 40 °C, the survival of particle attached E. coli O157:H7 was longer than that of particle attached Salmonella. Under free floating condition, Salmonella survived longer than E. coli O157:H7. At 50 °C, survival of particle attached E. coli O157:H7 and Salmonella was longer than that of free floating E. coli and Salmonella. At 60 °C, survival of particle attached Salmonella was longer than that of free floating Salmonella. Similarly at 60 °C, the survival of E. coli O157:H7  under particle attached condition was longer than that of the free floating condition. The findings of this study suggest that the survival of E. coli O157:H7 differs than the survival of Salmonella in stream water and thermal spring conditions, and the assumption used in previous studies to estimate survival of bacteria in stream environment could result in over/underestimation if the impact of particle attachment on pathogen survival is not accounted for.

7.
Environ Manage ; 57(4): 929-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26707499

ABSTRACT

Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring , Models, Theoretical , Rivers/chemistry , Hydrodynamics , Water Movements
8.
Environ Monit Assess ; 187(3): 124, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25694031

ABSTRACT

Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.


Subject(s)
Escherichia coli/growth & development , Models, Statistical , Rivers/microbiology , Water Pollution/statistics & numerical data , Water Quality/standards , Cross-Sectional Studies , Iowa
SELECTION OF CITATIONS
SEARCH DETAIL
...