Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 5(5): 1307-1315, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36866268

ABSTRACT

We report on a novel method for porous diamond fabrication, which is based on the synthesis of diamond-germanium composite films followed by etching of the Ge component. The composites were grown by microwave plasma assisted CVD in CH4-H2-GeH4 mixtures on (100) silicon, and microcrystalline- and single-crystal diamond substrates. The structure and the phase composition of the films before and after etching were analyzed with scanning electron microscopy and Raman spectroscopy. The films revealed a bright emission of GeV color centers due to diamond doping with Ge, as evidenced by photoluminescence spectroscopy. The possible applications of the porous diamond films include thermal management, surfaces with superhydrophobic properties, chromatography, supercapacitors, etc.

2.
Nano Lett ; 22(7): 2589-2594, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35302763

ABSTRACT

Two novel properties, unique for semiconductors, a negative electron affinity and a high p-type surface electrical conductivity, were discovered in diamond at the end of the last century. Both properties appear when the diamond surface is hydrogenated. A natural question arises: is the influence of the surface hydrogen on diamond limited only to the electrical properties? Here, for the first time to our knowledge, we observe a transparency peak at 1328 cm-1 in the infrared absorption of hydrogen-terminated pure (undoped) nanodiamonds. This new optical property is ascribed to Fano-type destructive interference between zone-center optical phonons and free carriers (holes) appearing in the near-surface layer of hydrogenated nanodiamond. This work opens the way to explore the physics of electron-phonon coupling in undoped semiconductors and promises the application of H-terminated nanodiamonds as a new optical material with induced transparency in the infrared optical range.

3.
Sci Rep ; 11(1): 14228, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244547

ABSTRACT

Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported. All-optical detection of temperature, based on spectral changes of the emission of "silicon-vacancy" centers with temperature, is used. We demonstrate the applicability of the thermometric tool to the study of temperature distribution near a local heater, placed in an aqueous medium. The calculated and experimental values of temperatures are shown to coincide within measurement error at gradients up to 20 °C/µm. Until now, temperature measurements on the submicron scale at such high gradients have not been performed. The new thermometric tool opens up unique opportunities to answer the urgent paradigm-shifting questions of cell physiology thermodynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...