Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int Microbiol ; 24(2): 197-205, 2021 May.
Article in English | MEDLINE | ID: mdl-33404932

ABSTRACT

To rationally optimize the production of industrial enzymes by molecular means requires previous knowledge of the regulatory circuits controlling the expression of the corresponding genes. The genus Stachybotrys is an outstanding producer of cellulose-degrading enzymes. Previous studies isolated and characterized the lichenase-like/non-typical cellulase Cel12A of S. atra (AKA S. chartarum) belonging to glycosyl hydrolase family 12 (GH12). In this study, we used RT-qPCR to determine the pattern of expression of cel12A under different carbon sources and initial ambient pH. Among the carbon sources examined, rice straw triggered a greater increase in the expression of cel12A than 1% lactose or 0.1% glucose, indicating specific induction by rice straw. In contrast, cel12A was repressed in the presence of glucose even when combined with this inducer. The proximity of 2 adjacent 5'-CTGGGGTCTGGGG-3' CreA consensus target sites to the translational start site of cel12A strongly suggests that the carbon catabolite repression observed is directly mediated by CreA. Ambient pH did not have a significant effect on cel12A expression. These findings present new knowledge on transcriptional regulatory networks in Stachybotrys associated with cellulose/hemicellulose depolymerization. Rational engineering of CreA to remove CCR could constitute a novel strategy for improving the production of Cel12A.


Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Enzymologic , Glycoside Hydrolases/genetics , Lignin/metabolism , Stachybotrys/enzymology , Catabolite Repression , Cellulose/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glucose/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Lignin/chemistry , Multigene Family , Polymerization , Stachybotrys/chemistry , Stachybotrys/genetics , Transcription, Genetic
2.
Int J Biol Macromol ; 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32360968

ABSTRACT

Bacterial cellulose (BC) has emerged as an attractive adsorptive material for antimicrobial agents due to its fine network structure, its large surface area, and its high porosity. In the present study, BC paper was first produced and then lysozyme was immobilized onto it by physical adsorption, obtaining a composite of lysozyme-BC paper. The morphology and the crystalline structure of the composite were similar to that of BC paper as examined by scanning electron microscopy and X-ray diffraction, respectively. Regarding operational properties, specific activities of immobilized and free lysozyme were similar. Moreover, immobilized enzyme showed a broader working temperature and higher thermal stability. The composites maintained its activity for at least 80 days without any special storage. Lysozyme-BC paper displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, inhibiting their growth by 82% and 68%, respectively. Additionally, the presence of lysozyme increased the antioxidant activity of BC paper by 30%. The results indicated that BC is a suitable material to produce bioactive paper as it provides a biocompatible environment without compromising the activity of the immobilized protein. BC paper with antimicrobial and antioxidant properties may have application in the field of active packaging.

3.
Biomacromolecules ; 21(4): 1568-1577, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32163275

ABSTRACT

The production of paper-based bacterial cellulose-chitosan (BC-Ch) nanocomposites was accomplished following two different approaches. In the first, BC paper sheets were produced and then immersed in an aqueous solution of chitosan (BC-ChI); in the second, BC pulp was impregnated with chitosan prior to the production of paper sheets (BC-ChM). BC-Ch nanocomposites were investigated in terms of physical characteristics, antimicrobial and antioxidant properties, and the ability to inhibit the formation of biofilms on their surface. The two types of BC-Ch nanocomposites maintained the hydrophobic character, the air barrier properties, and the high crystallinity of the BC paper. However, BC-ChI showed a surface with a denser fiber network and with smaller pores than those of BC-ChM. Only 5% of the chitosan leached from the BC-Ch nanocomposites after 96 h of incubation in an aqueous medium, indicating that it was well retained by the BC paper matrix. BC-Ch nanocomposites displayed antimicrobial activity, inhibiting growth of and having a killing effect against bacteria Staphylococcus aureus and Pseudomonas aeruginosa and yeast Candida albicans. Moreover, BC-Ch papers showed activity against the formation of a biofilm on their surface. The incorporation of chitosan increased the antioxidant activity of the BC paper. Paper-based BC-Ch nanocomposites combined the physical properties of BC paper and the antimicrobial, antibiofilm, and antioxidant activities of chitosan.


Subject(s)
Chitosan , Nanocomposites , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria , Cellulose , Chitosan/pharmacology
4.
Int J Biol Macromol ; 155: 1075-1083, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-31712139

ABSTRACT

XOS are particularly interesting bioactive molecules. Bacillus safensis CBLMA18, a xylanolytic bacterium has been isolated and two of its xylanases have been identified and fully characterized. Xyn11A is an extracellular 22.5-kDa GH11 xylanase while a second xylanase, Xyn10B, corresponds to an intracellular 48-kDa GH10 enzyme. Both unimodular xylanases showed activity only on xylan substrates with important differences in their catalytic pattern. Xyn11A displays higher activity on glucuronoxylans, with an optimum at pH 8 and 50 °C, and a Vmax of 5281 U/mg on beechwood xylan, meanwhile Xyn10B prefers arabinoxylans, with an optimum of pH 7 and 60 °C, and a Vmax of 50.29 U/mg on rye arabinoxylan. The antioxidant activity of xylanase-generated XOS obtained from glucuronoxylans (UXOS) and arabinoxylans (AXOS) was tested with the ABTS (2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) method. UXOS showed higher antioxidant activity than AXOS (>80% of antioxidant capacity). Thin layer chromatography and MALDI-TOF MS analysis showed that UXOS comprise neutral and acidic XOS with methylglucuronic acid (MeGlcA) ramifications, while AXOS contain only neutral molecules with arabinose decorations. The MeGlcA ramifications seem to have an important role in the antioxidant capacity of oligosaccharides. Besides, the increase of UXOS size correlates with an increase in their activity.


Subject(s)
Antioxidants/pharmacology , Bacillus/enzymology , Endo-1,4-beta Xylanases/metabolism , Oligosaccharides/metabolism , Xylans/metabolism , Antioxidants/chemistry , Substrate Specificity , Xylans/chemistry , Xylans/pharmacology
5.
Biotechnol Biofuels ; 12: 161, 2019.
Article in English | MEDLINE | ID: mdl-31289461

ABSTRACT

BACKGROUND: The increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource. Moreover, its properties can be modified physically, chemically or biotechnologically in order to obtain new bioproducts. Refined cotton linters with high cellulose content were treated with hydrolytic (cellulases) and oxidative (LPMO and Laccase_Tempo) enzymes to evaluate their effect on fibre properties and in improving mechanical fibrillation. RESULTS: Cellulases released cellooligosaccharides, reducing fibre length and partially degrading cellulose. They also improved mechanical fibrillation yielding up to 18% of nanofibrillated cellulose (NFC). LPMO introduced a slight amount of COOH groups in cellulose fibres, releasing cellobionic acid to the effluents. The action of cellulases was improved after LPMO treatment; however, the COOH groups created disappeared from fibres. After mechanical fibrillation of LPMO-cellulase-treated cotton linters a 23% yield of NFC was obtained. Laccase_Tempo treatment also introduced COOH groups in cellulose fibres from cotton, yielding 10% of NFC. Degree of polymerization was reduced by Laccase_Tempo, while LPMO treatment did not significantly affect it but produced a higher reduction in fibre length. The combined treatment with LPMO and cellulase provided films with higher transparency (86%), crystallinity (92%), smoothness and improved barrier properties to air and water than films casted from non-treated linters and from commercial NFC. CONCLUSIONS: The combined enzymatic treatment with LPMO and cellulases boosted mechanical fibrillation of cotton linters, improving the NFC production and providing bioproducts with high transparency and high barrier properties.

6.
Carbohydr Polym ; 207: 59-67, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30600044

ABSTRACT

A series of cellulosic substrates has been produced, treated with lytic polysaccharide monooxygenase (LPMO) from Streptomyces ambofaciens (SamLPMO10C), and analyzed by high performance anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). The activity of the bacterial LPMO showed high variability depending on the origin and degree of crystallinity of the substrate. Additionally, we tested the effectiveness of SamLPMO10C in the nanofibrillation of flax, a high crystalline agricultural fiber, as a single pretreatment or in combination with cellulases. All pretreatments were followed by a mechanical defibrillation by high-pressure homogenization (HPH) to obtain cellulose nanofibrils (NFC). The combined LPMO-cellulase treatment showed higher fibrillation yield, optical transmittance and carboxylate content than control reactions. Therefore, it could be explored as a promising green alternative to reduce the energy consumption in the production of NFC. To our knowledge, this is the first study reporting the effect of a bacterial LPMO in nanocellulose production.


Subject(s)
Cellulose/chemistry , Mixed Function Oxygenases/chemistry , Nanofibers/chemistry , Cellulases/chemistry , Crystallization , Enzyme Assays , Flax/chemistry , Hydrolysis , Paenibacillus/enzymology , Streptomyces/enzymology , Substrate Specificity , Textiles
7.
Carbohydr Polym ; 194: 43-50, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29801857

ABSTRACT

Antioxidant activity of xylooligosaccharides (XOS) released from beechwood and birchwood glucuronoxylans by two different xylanases, one from family GH10 (Xyn10A) and another from family GH30 (Xyn30D) was examined. The ABTS (2, 2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) method was used, since it resulted more accurate for the antioxidant activity determination of XOS. Thin layer chromatography and MALDI-TOF MS analysis showed that Xyn10A produced a mixture of neutral and acidic XOS whereas the XOS produced by Xyn30D were all acidic, containing a methylglucuronic acid (MeGlcA) ramification. These acidic XOS, MeGlcA substituted, showed a strongly higher antioxidant activity than the XOS produced by Xyn10A (80% vs. 10% respectively, at 200 µg mL-1). Moreover, the antioxidant activity increased with the degree of polymerization of XOS, and depended on the xylan substrate used. The antioxidant capacity of eucalyptus autohydrolysates after xylanase treatment was also analysed, showing a decrease of their antioxidant activity simultaneous with the decrease in XOS length.


Subject(s)
Antioxidants/metabolism , Eucalyptus/metabolism , Glucuronates/biosynthesis , Oligosaccharides/biosynthesis , Xylans/chemistry , Antioxidants/chemistry , Endo-1,4-beta Xylanases/metabolism , Eucalyptus/chemistry , Glucuronates/chemistry , Hydrolysis , Oligosaccharides/chemistry , Xylans/metabolism
8.
Biotechnol Prog ; 33(5): 1209-1217, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28884505

ABSTRACT

Previously isolated and characterized Pseudomonas lipases were immobilized in a low-cost MP-1000 support by a re-loading procedure that allowed a high activity per weight of support. Immobilized LipA, LipC, and LipCmut lipases, and commercial Novozym® 435 were tested for fatty acid methyl ester (FAMEs) synthesis using conventional and alternative feedstocks. Triolein and degummed soybean oils were used as model substrates, whereas waste cooking oil and M. circinelloides oil were assayed as alternative, low cost feedstocks, whose free fatty acid (FFA), and acylglyceride profile was characterized. The reaction conditions for FAMEs synthesis were initially established using degummed soybean oil, setting up the best water and methanol concentrations for optimum conversion. These conditions were further applied to the alternative feedstocks and the four lipases. The results revealed that Pseudomonas lipases were unable to use the FFAs, displaying a moderate FAMEs synthesis, whereas a 44% FAMEs production was obtained when M. circinelloides oil was used as a substrate in the reaction catalysed by Novozym® 435, used under the conditions established for degummed soybean oil. However, when Novozym® 435 was tested under previously described optimal conditions for this lipase, promising values of 85 and 76% FAMEs synthesis were obtained for waste cooking oil and M. circinelloides oil, respectively, which might result in promising, nonfood, alternative feedstocks for enzymatic biodiesel production. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1209-1217, 2017.


Subject(s)
Biofuels , Enzymes, Immobilized/metabolism , Fatty Acids/metabolism , Lipase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bioreactors , Enzymes, Immobilized/chemistry , Esterification , Fungal Proteins , Lipase/chemistry , Plant Oils/metabolism , Pseudomonas/enzymology
9.
Carbohydr Res ; 448: 205-211, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28366436

ABSTRACT

A simple purification method by affinity adsorption was developed to obtain functional lytic polysaccharide monooxygenases (LPMOs). The system allows the successful purification to homogeneity of the most characterized bacterial LPMO, CBP21 from Serratia marcescens, and two LPMOs from Streptomyces ambofaciens, which have not been previously characterized. The first of these new LPMOs, named SamLPMO10B is a small enzyme (15 kDa) belonging to family 10 of auxiliary activities (AA10), showing activity on ß-chitin. The second LPMO, SamLPMO10C (34.7 kDa), is a bimodular enzyme comprised of an AA10 catalytic module and a carbohydrate binding module of family CBM2. SamLPMO10C shows activity on cellulosic substrates, including agricultural fiber paper pulps. The methodology developed simplifies the purification process to a binding-elution protocol with low-grade polysaccharides including Avicel. The strategy can be a cheap, simple and fast solution for the purification of LPMOs for industrial applications, leaving out periplasmic fractionation from recombinant strains therefore, with reduction of time and costs compared to conventional processes. The activity of SamLPMO10C expands the potential of the high valued LPMOs in lignocellulosic biomass valorization, reaffirming their promising role in cellulose deconstruction.


Subject(s)
Chemical Fractionation/methods , Mixed Function Oxygenases/isolation & purification , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Streptomyces/enzymology , Adsorption , Biomass , Cloning, Molecular , Lignin/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Molecular Weight , Time Factors
10.
Appl Microbiol Biotechnol ; 101(7): 2943-2952, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28120014

ABSTRACT

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/metabolism , Paenibacillus/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Catalytic Domain , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/isolation & purification , Escherichia coli/genetics , Hydrolysis , Kinetics , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Deletion , Substrate Specificity
11.
Appl Environ Microbiol ; 82(17): 5116-24, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27316951

ABSTRACT

UNLABELLED: A GH8 family enzyme involved in xylan depolymerization has been characterized. The enzyme, Rex8A, is a reducing-end xylose-releasing exo-oligoxylanase (Rex) that efficiently hydrolyzes xylooligosaccharides and shows minor activity on polymeric xylan. Rex8A hydrolyzes xylooligomers of 3 to 6 xylose units to xylose and xylobiose in long-term incubations. Kinetic constants of Rex8A were determined on xylotriose, showing a Km of 1.64 ± 0.03 mM and a kcat value of 118.8 s(-1) Besides linear xylooligosaccharides, the enzyme hydrolyzed decorated xylooligomers. The catalytic activity on branched xylooligosaccharides, i.e., the release of xylose from the reducing end, is a newly described trait of xylose-releasing exo-oligoxylanases, as the exo-activity on these substrates has not been reported for the few of these enzymes characterized to date. Modeling of the three-dimensional (3D) structure of Rex8A shows an (α/α)6 barrel fold where the loops connecting the α-helices contour the active site. These loops, which show high sequence diversity among GH8 enzymes, shape a catalytic cleft with a -2 subsite that can accommodate methyl-glucuronic acid decorations. The hydrolytic ability of Rex8A on branched oligomers can be crucial for the complete depolymerization of highly substituted xylans, which is indispensable to accomplish biomass deconstruction and to generate efficient catalysts. IMPORTANCE: A GH8 family enzyme involved in xylan depolymerization has been characterized. The Rex8A enzyme from Paenibacillus barcinonensis is involved in depolymerization of glucuronoxylan, a major component of the lignocellulosic substrates. The study shows that Rex8A is a reducing-end xylose-releasing exo-oligoxylanase that efficiently hydrolyzes xylose from neutral and acidic xylooligosaccharides generated by the action of other xylanases also secreted by the strain. The activity of a Rex enzyme on branched xylooligosaccharides has not been described to date. This report provides original and useful information on the properties of a new example of the rarely studied Rex enzymes. Depolymerization of highly substituted xylans is crucial for biomass valorization as a platform for generation of biofuels, chemicals, and solvents.


Subject(s)
Bacterial Proteins/metabolism , Glucuronates/metabolism , Glycoside Hydrolases/metabolism , Oligosaccharides/metabolism , Paenibacillus/enzymology , Xylose/metabolism , Xylosidases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Glucuronates/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Multigene Family , Oligosaccharides/chemistry , Paenibacillus/chemistry , Paenibacillus/genetics , Substrate Specificity , Xylosidases/genetics
12.
World J Microbiol Biotechnol ; 32(8): 123, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27339304

ABSTRACT

The ß-glucanase Cel12A gene from Stachybotrys atra has been cloned and heterologously expressed in Aspergillus nidulans and Saccharomyces cerevisiae. The recombinant strains constructed, contained the exonic sequence of cel12A including its own signal peptide coding sequence. SDS-PAGE and zymography revealed that recombinant Cel12A has a molecular mass of 24 kDa which agrees with that deduced from its amino acid sequence, indicating that it is expressed in the non-glycosylated active form. Recombinant A. nidulans showed about eightfold greater activity yield than S. cerevisiae recombinant strain, namely 0.71 and 0.09 ß-glucanase Units/ml of culture, respectively. In both host strains most of the activity was secreted to the extracellular media, evidencing the functionality of Cel12A signal peptide in yeast and fungi. This novel signal peptide might facilitate the expression and efficient secretion of other recombinant proteins difficult to secrete.


Subject(s)
Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Protein Sorting Signals , Stachybotrys/enzymology , Amino Acid Sequence , Aspergillus nidulans/genetics , Cloning, Molecular , Genetic Engineering , Molecular Weight , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Stachybotrys/genetics
13.
Appl Microbiol Biotechnol ; 100(4): 1743-1751, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26481625

ABSTRACT

Arabinofuranosidase Abf43A from Bacillussp. BP-7 i s a newly discovered arabinoxylan arabinofuranohydrolase (AXH). It is a modular enzyme comprised of a GH43 catalytic domain and a carbohydrate-binding module of family CBM6. Recombinant Abf43A showed high activity on arabinoxylans, being rye arabinoxylan the preferred substrate on which the purified enzyme exhibited a Km of 10.6 ± 3.3 mg/ml and a Vmax of 29.2 ± 3.4 U/mg. Thin-layer chromatography analysis of hydrolysis products showed arabinose as the only sugar released by the enzyme from its substrates. The GH43 and CBM6 modules of the enzyme were individually cloned and expressed in Escherichia coli. While the isolated catalytic GH43 module did not show hydrolytic activity, the purified CBM6 bound to soluble arabinoxylan in affinity gel electrophoresis analysis. Evaluation of cooperative activity of arabinofuranosidase Abf43A with xylanases from families GH10, GH11, andGH30, (Xyn10A, Xyn11E, and Xyn30D from Paenibacillus barcinonensis) on arabinoxylan depolymerization revealed that the studied enzyme showed synergism with Xyn11E, a 2.54-fold increase in the amount of sugars released. On the contrary, Abf43A did not show synergism with the xylanases of families GH10 or GH30 evaluated. The enzyme characterized contributes to understanding the role of this class of enzymes in the catalytic depolymerization of arabinoxylans and their potential for the production of valuable xylooligosaccharides from these abundant plant polymers.


Subject(s)
Bacillus/enzymology , Glycoside Hydrolases/metabolism , Xylosidases/metabolism , Bacillus/genetics , Biotransformation , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glycoside Hydrolases/genetics , Hydrolysis , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Xylans/metabolism
14.
J Biol Chem ; 290(28): 17116-30, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26001782

ABSTRACT

Elucidating the molecular mechanisms regulating multimodularity is a challenging task. Paenibacillus barcinonensis Xyn10C is a 120-kDa modular enzyme that presents the CBM22/GH10/CBM9 architecture found in a subset of large xylanases. We report here the three-dimensional structure of the Xyn10C N-terminal region, containing the xylan-binding CBM22-1-CBM22-2 tandem (Xyn10C-XBD), which represents the first solved crystal structure of two contiguous CBM22 modules. Xyn10C-XBD is folded into two separate CBM22 modules linked by a flexible segment that endows the tandem with extraordinary plasticity. Each isolated domain has been expressed and crystallized, and their binding abilities have been investigated. Both domains contain the R(W/Y)YYE motif required for xylan binding. However, crystallographic analysis of CBM22-2 complexes shows Trp-308 as an additional binding determinant. The long loop containing Trp-308 creates a platform that possibly contributes to the recognition of precise decorations at subsite S2. CBM22-2 may thus define a subset of xylan-binding CBM22 modules directed to particular regions of the polysaccharide. Affinity electrophoresis reveals that Xyn10C-XBD binds arabinoxylans more tightly, which is more apparent when CBM22-2 is tested against highly substituted xylan. The crystal structure of the catalytic domain, also reported, shows the capacity of the active site to accommodate xylan substitutions at almost all subsites. The structural differences found at both Xyn10C-XBD domains are consistent with the isothermal titration calorimetry experiments showing two sites with different affinities in the tandem. On the basis of the distinct characteristics of CBM22, a delivery strategy of Xyn10C mediated by Xyn10C-XBD is proposed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Wall/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Paenibacillus/enzymology , Plants/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Catalytic Domain , Crystallography, X-Ray , DNA, Bacterial/genetics , Endo-1,4-beta Xylanases/genetics , Ligands , Models, Molecular , Molecular Sequence Data , Paenibacillus/genetics , Protein Conformation , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xylans/metabolism
15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 136-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25664784

ABSTRACT

A construct containing the CBM22-1-CBM22-2 tandem forming the N-terminal domain of Paenibacillus barcinonensis xylanase 10C (Xyn10C) has been purified and crystallized. A xylan-binding function and an affinity for mixed ß-1,3/ß-1,4 glucans have previously been demonstrated for some members of the CBM22 family. The sequence of the tandem is homologous to the N-terminal domains found in several thermophilic enzymes. Crystals of this tandem were grown by the streak-seeding method after a long optimization strategy. The structure has been determined by molecular replacement to a resolution of 2.43 Å and refinement is under way. This study represents the first structure containing two contiguous CBM22 modules, which will contribute to a better understanding of the role that this multiplicity plays in fine-tuning substrate affinity.


Subject(s)
Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Paenibacillus/chemistry , X-Ray Diffraction , Amino Acid Sequence , Crystallization , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Protein Structure, Tertiary
16.
J Biol Chem ; 289(45): 31088-101, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25202007

ABSTRACT

Glucuronoxylanase Xyn30D is a modular enzyme containing a family 30 glycoside hydrolase catalytic domain and an attached carbohydrate binding module of the CBM35 family. We present here the three-dimensional structure of the full-length Xyn30D at 2.4 Å resolution. The catalytic domain folds into an (α/ß)8 barrel with an associated ß-structure, whereas the attached CBM35 displays a jellyroll ß-sandwich including two calcium ions. Although both domains fold in an independent manner, the linker region makes polar interactions with the catalytic domain, allowing a moderate flexibility. The ancillary Xyn30D-CBM35 domain has been expressed and crystallized, and its binding abilities have been investigated by soaking experiments. Only glucuronic acid-containing ligands produced complexes, and their structures have been solved. A calcium-dependent glucuronic acid binding site shows distinctive structural features as compared with other uronic acid-specific CBM35s, because the presence of two aromatic residues delineates a wider pocket. The nonconserved Glu(129) makes a bidentate link to calcium and defines region E, previously identified as specificity hot spot. The molecular surface of Xyn30D-CBM35 shows a unique stretch of negative charge distribution extending from its binding pocket that might indicate some oriented interaction with its target substrate. The binding ability of Xyn30D-CBM35 to different xylans was analyzed by affinity gel electrophoresis. Some binding was observed with rye glucuronoarabinoxylan in presence of calcium chelating EDTA, which would indicate that Xyn30D-CBM35 might establish interaction to other components of xylan, such as arabinose decorations of glucuronoarabinoxylan. A role in depolymerization of highly substituted chemically complex xylans is proposed.


Subject(s)
Bacterial Proteins/chemistry , Paenibacillus/enzymology , Xylans/chemistry , Xylosidases/chemistry , Amino Acid Sequence , Bacillus subtilis/enzymology , Binding Sites , Biomass , Catalytic Domain , Cell Wall/enzymology , Crystallography, X-Ray , Edetic Acid/chemistry , Escherichia coli/metabolism , Molecular Sequence Data , Polysaccharides/chemistry , Protein Binding , Secale/chemistry , Sequence Homology, Amino Acid , Substrate Specificity , Wood
17.
Biochimie ; 104: 108-16, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929101

ABSTRACT

Strain Paenibacillus barcinonensis BP-23, previously isolated from Ebro's river delta (Spain), bears a complex hydrolytic system showing the presence of at least two enzymes with activity on lipidic substrates. EstA, a cell-bound B-type carboxylesterase from the strain was previously isolated and characterized. The gene coding for a second putative lipase, located upstream cellulase Cel5A, was obtained using a genome walking strategy and cloned in Escherichia coli for further characterization. The recombinant clone obtained displayed high activity on medium/short-chain fatty acid-derivative substrates. The enzyme, named Est23, was purified and characterized, showing maximum activity on pNP-caprylate (C8:0) or MUF-heptanoate (C7:0) under conditions of moderate temperature and pH. Although Est23 displays a GGG(A)X-type oxyanion hole, described as an important motif for tertiary alcohol ester resolution, neither conversion nor enantiomeric resolution of tertiary alcohols could be detected. Amino acid sequence alignment of Est23 with those of known bacterial lipase families and with closely related proteins suggests that the cloned enzyme does not belong to any of the described bacterial lipase families. A phylogenetic tree including Est23 and similar amino acid sequences showed that the enzyme belongs to a differentiated sequence cluster which probably constitutes a new family of bacterial lipolytic enzymes.


Subject(s)
Carboxylesterase/chemistry , Carboxylesterase/metabolism , Paenibacillus/enzymology , Alcohols/metabolism , Amino Acid Motifs , Carboxylesterase/genetics , Cloning, Molecular , Conserved Sequence , Peptide Hydrolases/metabolism , Phylogeny
18.
BMC Biotechnol ; 14: 27, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24755191

ABSTRACT

BACKGROUND: There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. RESULTS: To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite®545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI.3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I.3, requiring a refolding step, was poorly immobilized on all supports tested (best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. CONCLUSIONS: The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes.


Subject(s)
Biotechnology/methods , Enzymes, Immobilized/chemistry , Lipase/chemistry , Pseudomonas/enzymology , Bacterial Proteins/chemistry
19.
Appl Microbiol Biotechnol ; 98(13): 5949-57, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24549767

ABSTRACT

A new xylanase from Paenibacillus barcinonensis BP-23, Xyn11E, has been identified and characterized. Xyn11E has been cloned and heterologously expressed in Escherichia coli. It is a single-domain xylanase belonging to the family 11 of glycosyl hydrolases (GH11) with a predicted molecular weight of 20.652 kDa and an isoelectric point (pI) of 8.7. Substrate specificity, kinetic properties, and mode of action of the purified xylanase were characterized. Xyn11E exhibited high activity toward branched xylans, being beechwood xylan the preferred substrate. The optimum pH and temperature of the purified enzyme were 6.5 and 50 °C, respectively. Catalytic constants were determined on beechwood xylan, on which Xyn11E showed a Km of 12.98 mg/ml and a Vmax of 3,023 U/mg. The enzyme hydrolyzed long xylooligosaccharides, while oligomers shorter than xylotetraose were not degraded. Products released from glucuronoxylans were shorter than those liberated from cereal arabinoxylans. The xylanase was dependent on P. barcinonensis BP-23 LppX for its expression in an active form. Coexpression of Xyn11E with E. coli chaperones could not replace the need of LppX, which seems to act as a specific chaperone for Xyn11E correct folding. Activity of the enzyme on bleached pulps was evaluated. Xyn11E liberated reducing sugars from ECF and TCF pulps from eucalyptus, sisal, and flax, which makes it a good candidate for the enzymatic-assisted production of high-cellulose-content pulps from paper-grade pulps.


Subject(s)
Paenibacillus/enzymology , Xylosidases/genetics , Xylosidases/metabolism , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Molecular Sequence Data , Molecular Weight , Paenibacillus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Substrate Specificity , Temperature , Xylosidases/chemistry , Xylosidases/isolation & purification
20.
Bioresour Technol ; 157: 14-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24525243

ABSTRACT

The interaction of recombinant cellulose-binding domains (CBDs) of endoglucanase Cel9B from Paenibacillus barcinonensis with different cotton cellulose allomorphs (I, II and III) has been investigated, in order to bring new insights regarding the CBD adsorption and desorption processes. The highest CBD adsorption capacity was recorded for cellulose I, confirming the affinity of proteins to the most crystalline substrate. The weakening and splitting of the hydrogen bonds within cellulose structure after CBD adsorption, as well as a decrease of the crystallinity degree were identified by ATR-FTIR spectroscopy and XRD. The CBD's adsorption kinetic was shown to be rendered by properties as, specific surface area and porosity, being confirmed by dynamic vapor sorption measurements. An important influence of temperature (25, 37 and 50°C) and/or pH medium (4, 5.5, 7 and 10) on the CBD desorption capacity was confirmed, being related to the hydrophobic interactions formed between the CBD and the cellulose allomorphs.


Subject(s)
Cellulase/chemistry , Cellulase/metabolism , Cellulose/chemistry , Cellulose/metabolism , Paenibacillus/enzymology , Adsorption , Amino Acid Sequence , Crystallization , Hydrogen Bonding , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Regression Analysis , Spectroscopy, Fourier Transform Infrared , Steam , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...