Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci China Life Sci ; 67(2): 230-257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212460

ABSTRACT

The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Lysosomes/metabolism , Endosomes/metabolism
2.
J Biol Chem ; 299(12): 105394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890775

ABSTRACT

Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.


Subject(s)
Collagen Type IV , Drosophila Proteins , Drosophila , Animals , Humans , Basement Membrane/metabolism , Chlorides/metabolism , Collagen Type IV/metabolism , Drosophila/metabolism , Protein Structure, Tertiary , Protein Subunits/metabolism , Drosophila Proteins/metabolism
3.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36239631

ABSTRACT

At the trans-Golgi, complex traffic connections exist to the endolysosomal system additional to the main Golgi-to-plasma membrane secretory route. Here, we investigated three hits in a Drosophila screen displaying secretory cargo accumulation in autophagic vesicles: ESCRT-III component Vps20, SNARE-binding Rop, and lysosomal pump subunit VhaPPA1-1. We found that Vps20, Rop, and lysosomal markers localize near the trans-Golgi. Furthermore, we document that the vicinity of the trans-Golgi is the main cellular location for lysosomes and that early, late, and recycling endosomes associate as well with a trans-Golgi-associated degradative compartment where basal microautophagy of secretory cargo and other materials occurs. Disruption of this compartment causes cargo accumulation in our hits, including Munc18 homolog Rop, required with Syx1 and Syx4 for Rab11-mediated endosomal recycling. Finally, besides basal microautophagy, we show that the trans-Golgi-associated degradative compartment contributes to the growth of autophagic vesicles in developmental and starvation-induced macroautophagy. Our results argue that the fly trans-Golgi is the gravitational center of the whole endomembrane system.


Subject(s)
Autophagy , Endosomes , Golgi Apparatus , Lysosomes , Animals , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Transport , SNARE Proteins/genetics , SNARE Proteins/metabolism , rab GTP-Binding Proteins
4.
Cell Rep ; 36(10): 109667, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496252

ABSTRACT

During Drosophila metamorphosis, dorsal and ventral wing surfaces adhere, separate, and reappose in a paradoxical process involving cell-matrix adhesion, matrix production and degradation, and long cellular projections. The identity of the intervening matrix, the logic behind the adhesion-reapposition cycle, and the role of projections are unknown. We find that laminin matrix spots devoid of other main basement membrane components mediate wing adhesion. Through live imaging, we show that long microtubule-actin cables grow from those adhesion spots because of hydrostatic pressure that pushes wing surfaces apart. Formation of cables resistant to pressure requires spectraplakin, Patronin, septins, and Sdb, a SAXO1/2 microtubule stabilizer expressed under control of wing intervein-selector SRF. Silkworms and dead-leaf butterflies display similar dorso-ventral projections and expression of Sdb in intervein SRF-like patterns. Our study supports the morphogenetic importance of atypical basement-membrane-related matrices and dissects matrix-cytoskeleton coordination in a process of great evolutionary significance.


Subject(s)
Actins/metabolism , Laminin/metabolism , Microtubules/metabolism , Wings, Animal/metabolism , Animals , Basement Membrane/metabolism , Butterflies/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Metamorphosis, Biological/physiology , Microtubule-Associated Proteins/metabolism , Morphogenesis/physiology
5.
Sci Rep ; 10(1): 8485, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444687

ABSTRACT

Despite their essential function in terminating translation, readthrough of stop codons occurs more frequently than previously supposed. However, little is known about the regulation of stop codon readthrough by anatomical site and over the life cycle of animals. Here, we developed a set of reporters to measure readthrough in Drosophila melanogaster. A focused RNAi screen in whole animals identified upf1 as a mediator of readthrough, suggesting that the stop codons in the reporters were recognized as premature termination codons (PTCs). We found readthrough rates of PTCs varied significantly throughout the life cycle of flies, being highest in older adult flies. Furthermore, readthrough rates varied dramatically by tissue and, intriguingly, were highest in fly brains, specifically neurons and not glia. This was not due to differences in reporter abundance or nonsense-mediated mRNA decay (NMD) surveillance between these tissues. Readthrough rates also varied within neurons, with cholinergic neurons having highest readthrough compared with lowest readthrough rates in dopaminergic neurons. Overall, our data reveal temporal and spatial variation of PTC-mediated readthrough in animals, and suggest that readthrough may be a potential rescue mechanism for PTC-harboring transcripts when the NMD surveillance pathway is inhibited.


Subject(s)
Codon, Terminator , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Protein Biosynthesis , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Female , Gene Expression Profiling , Male , Organ Specificity
6.
J Cell Sci ; 133(8)2020 04 21.
Article in English | MEDLINE | ID: mdl-32317312

ABSTRACT

The evolution of basement membranes (BMs) played an essential role in the organization of animal cells into tissues and diversification of body plans. The archetypal BM is a compact extracellular matrix polymer containing laminin, nidogen, collagen IV and perlecan (LNCP matrix) tightly packed into a homogenously thin planar layer. Contrasting this clear-cut morphological and compositional definition, there are numerous examples of LNCP matrices with unusual characteristics that deviate from this planar organization. Furthermore, BM components are found in non-planar matrices that are difficult to categorize as BMs at all. In this Review, I discuss examples of atypical BM organization. First, I highlight atypical BM structures in human tissues before describing the functional dissection of a plethora of BMs and BM-related structures in their tissue contexts in the fruit fly Drosophila melanogaster To conclude, I summarize our incipient understanding of the mechanisms that provide morphological, compositional and functional diversity to BMs. It is becoming increasingly clear that atypical BMs are quite prevalent, and that even typical planar BMs harbor a lot of diversity that we do not yet comprehend.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Basement Membrane , Extracellular Matrix Proteins , Laminin/genetics
7.
Front Cell Dev Biol ; 8: 619022, 2020.
Article in English | MEDLINE | ID: mdl-33505971

ABSTRACT

In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.

8.
Dev Cell ; 49(5): 731-747.e7, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31006649

ABSTRACT

Polyploid cells endoreplicate their DNA through a modified cell cycle that skips mitosis as part of their differentiation programs. Upon cell-cycle exit and differentiation, non-centrosomal sites govern microtubule distribution in most cells. Little is known on how polyploid cells, differentiated but cycling, organize their microtubules. We show that microtubules in Drosophila adipocytes and other polyploid tissues form a dense perinuclear cortex responsible for nuclear size and position. Confirming a relation between this perinuclear cortex and the polyploid endocycle, polyploidization of normally diploid cells was sufficient for cortex formation. A critical component of the perinuclear microtubule organizer (pnMTOC) is Shot, absence of which caused collapse of the perinuclear network into a condensed organizer through kinesin-dependent microtubule sliding. Furthermore, this ectopic organizer was capable of directing partial assembly of a deeply disruptive cytokinesis furrow. In all, our study revealed the importance of perinuclear microtubule organization for stability of endocycling Drosophila cells.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Katanin/metabolism , Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/physiology , Polyploidy , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytokinesis , Drosophila Proteins/genetics , Female , Katanin/genetics , Male , Microfilament Proteins/genetics , Microtubule-Associated Proteins/genetics , Spindle Apparatus
9.
PLoS Genet ; 14(9): e1007483, 2018 09.
Article in English | MEDLINE | ID: mdl-30260959

ABSTRACT

Basement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen in addition to the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg in morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from cultured embryonic tissue experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival strongly questioned this proposed linking role. Here, we have isolated mutations in the only Ndg gene present in Drosophila. We find that while, similar to C.elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. We also find, alike in mice, tissue-specific requirements of Ndg for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, we have performed a thorough functional analysis of the different Ndg domains in vivo. Our results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of our findings, we propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen.


Subject(s)
Basement Membrane/physiology , Drosophila Proteins/physiology , Drosophila/physiology , Membrane Glycoproteins/physiology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Animals, Genetically Modified , Female , Fertility/physiology , Male , Muscles/cytology , Muscles/metabolism , Mutation , Organ Specificity/physiology , Organogenesis/physiology , Protein Domains/physiology
10.
Curr Biol ; 27(18): 2729-2740.e4, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28867208

ABSTRACT

Sheet-forming Collagen IV is the main component of basement membranes, which are planar polymers of extracellular matrix underlying epithelia and surrounding organs in all animals. Adipocytes in both insects and mammals are mesodermal in origin and often classified as mesenchymal. However, they form true tissues where cells remain compactly associated. Neither the mechanisms providing this tissue-level organization nor its functional significance are known. Here we show that discrete Collagen IV intercellular concentrations (CIVICs), distinct from basement membranes and thicker in section, mediate inter-adipocyte adhesion in Drosophila. Loss of these Collagen-IV-containing structures in the larval fat body caused intercellular gaps and disrupted continuity of the adipose tissue layer. We also found that Integrin and Syndecan matrix receptors attach adipocytes to CIVICs and direct their formation. Finally, we show that Integrin-mediated adhesion to CIVICs promotes normal adipocyte growth and prevents autophagy through Src-Pi3K-Akt signaling. Our results evidence a surprising non-basement membrane role of Collagen IV in non-epithelial tissue morphogenesis while demonstrating adhesion and signaling functions for these structures.


Subject(s)
Adipocytes/cytology , Cell Adhesion , Collagen Type IV/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Signal Transduction , Animals , Cell Proliferation
11.
Dev Cell ; 42(1): 97-106.e4, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28697337

ABSTRACT

Basement membranes (BMs) are extracellular matrix polymers basally underlying epithelia, where they regulate cell signaling and tissue mechanics. Constriction by the BM shapes Drosophila wing discs, a well-characterized model of tissue growth. Recently, the hypothesis that mechanical factors govern wing growth has received much attention, but it has not been definitively tested. In this study, we manipulated BM composition to cause dramatic changes in tissue tension. We found that increased tissue compression when perlecan was knocked down did not affect adult wing size. BM elimination, decreasing compression, reduced wing size but did not visibly affect Hippo signaling, widely postulated to mediate growth mechanoregulation. BM elimination, in contrast, attenuated signaling by bone morphogenetic protein/transforming growth factor ß ligand Dpp, which was not efficiently retained within the tissue and escaped to the body cavity. Our results challenge mechanoregulation of wing growth, while uncovering a function of BMs in preserving a growth-promoting tissue environment.


Subject(s)
Basement Membrane/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Imaginal Discs/metabolism , Mechanotransduction, Cellular , Wings, Animal/metabolism , Animals , Cell Shape , Drosophila melanogaster/cytology , Imaginal Discs/cytology , Organ Size
12.
J Cell Biol ; 213(4): 479-94, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27216258

ABSTRACT

Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl(-) ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl(-) in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl(-) and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains.


Subject(s)
Basement Membrane/metabolism , Basement Membrane/physiology , Chlorides/metabolism , Collagen Type IV/metabolism , Amino Acid Sequence , Animals , Cattle , Cell Line, Tumor , Collagen Type IV/genetics , Humans , Phylogeny , Protein Conformation , Protein Structure, Tertiary , Protein Subunits/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...